Nonparametric models of financial time series
Neparametrické modely finančních časových řad
diplomová práce (OBHÁJENO)
![Náhled dokumentu](/bitstream/handle/20.500.11956/27655/thumbnail.png?sequence=7&isAllowed=y)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/27655Identifikátory
SIS: 45842
Kolekce
- Kvalifikační práce [11266]
Autor
Vedoucí práce
Oponent práce
Cipra, Tomáš
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Pravděpodobnost, matematická statistika a ekonometrie
Katedra / ústav / klinika
Katedra pravděpodobnosti a matematické statistiky
Datum obhajoby
23. 9. 2009
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Výborně
In this diploma thesis we study basic models of time series, both parametric and nonparametric, and their basic properties. In the first part several conditional homoscedastic models are examined and the basic estimation methods are explained. Afterwards, we continue with conditional heteroscedastic models. We explain the reasons why are these models suitable to analyze financial time series. We state and prove the conditions for the strict stationarity of GARCH and calculate the mean square error (MSE) of prediction in GARCH(1,1). Eventually, the robustness of the least absolute deviation (LAD) method for GARCH is discussed and supported by numerical results. At the end of this thesis we discuss methods for nonparametric GARCH(1,1) estimation.