Zobrazit minimální záznam

Bohaté rysy ve frázovém strojovém překladu
dc.contributor.advisorBojar, Ondřej
dc.creatorKos, Kamil
dc.date.accessioned2017-04-27T03:15:10Z
dc.date.available2017-04-27T03:15:10Z
dc.date.issued2010
dc.identifier.urihttp://hdl.handle.net/20.500.11956/33953
dc.description.abstractV této práci zkoumáme metody, jak zlepšit kvalitu statistického strojového překladu použitím bohaté lingvistické informace. Nejdříve popíšeme SemPOS - metriku, která využívá mělké sémantické reprezentace vět k hodnocení kvality strojového překladu. Ukážeme, že i když tato metrika dosahuje vysoké korelace s lidskými hodnoceními kvality překladu, není samostatně vhodná pro optimalizaci parametrů systémů strojového překladu. Za druhé rozšíříme základní log-lineární model používaný ve statistickém strojovém překladu o kontextový model zdrojové věty, který pomáhá lépe rozlišovat mezi různými možnostmi překladu dané fráze a pomáhá vybrat nejvhodnější překlad pro daný kontext v aktuální větě.cs_CZ
dc.description.abstractIn this thesis we investigate several methods how to improve the quality of statistical machine translation (MT) by using linguistically rich information. First, we describe SemPOS, a metric that uses shallow semantic representation of sentences to evaluate the translation quality. We show that even though this metric has high correlation with human assessment of translation quality it is not directly suitable for system parameter optimization. Second, we extend the log-linear model used in statistical MT by additional source-context model that helps to better distinguish among possible translation options and select the most promising translation for a given context.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectstrojový překladcs_CZ
dc.subjecthodnocení kvalitycs_CZ
dc.subjectkontextový modelcs_CZ
dc.subjectsuffixové polecs_CZ
dc.subjectmachine translationen_US
dc.subjectquality evaluationen_US
dc.subjectsource-context modelen_US
dc.subjectsuffix arrayen_US
dc.titleRich Features in Phrase-Based Machine Translationen_US
dc.typediplomová prácecs_CZ
dcterms.created2010
dcterms.dateAccepted2010-09-06
dc.description.departmentInstitute of Formal and Applied Linguisticsen_US
dc.description.departmentÚstav formální a aplikované lingvistikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId62749
dc.title.translatedBohaté rysy ve frázovém strojovém překladucs_CZ
dc.contributor.refereeŽabokrtský, Zdeněk
dc.identifier.aleph001384355
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineComputational Linguisticsen_US
thesis.degree.disciplineMatematická lingvistikacs_CZ
thesis.degree.programComputer Scienceen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Ústav formální a aplikované lingvistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Institute of Formal and Applied Linguisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická lingvistikacs_CZ
uk.degree-discipline.enComputational Linguisticsen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV této práci zkoumáme metody, jak zlepšit kvalitu statistického strojového překladu použitím bohaté lingvistické informace. Nejdříve popíšeme SemPOS - metriku, která využívá mělké sémantické reprezentace vět k hodnocení kvality strojového překladu. Ukážeme, že i když tato metrika dosahuje vysoké korelace s lidskými hodnoceními kvality překladu, není samostatně vhodná pro optimalizaci parametrů systémů strojového překladu. Za druhé rozšíříme základní log-lineární model používaný ve statistickém strojovém překladu o kontextový model zdrojové věty, který pomáhá lépe rozlišovat mezi různými možnostmi překladu dané fráze a pomáhá vybrat nejvhodnější překlad pro daný kontext v aktuální větě.cs_CZ
uk.abstract.enIn this thesis we investigate several methods how to improve the quality of statistical machine translation (MT) by using linguistically rich information. First, we describe SemPOS, a metric that uses shallow semantic representation of sentences to evaluate the translation quality. We show that even though this metric has high correlation with human assessment of translation quality it is not directly suitable for system parameter optimization. Second, we extend the log-linear model used in statistical MT by additional source-context model that helps to better distinguish among possible translation options and select the most promising translation for a given context.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Ústav formální a aplikované lingvistikycs_CZ
dc.identifier.lisID990013843550106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV