dc.contributor.advisor | Bojar, Ondřej | |
dc.creator | Kos, Kamil | |
dc.date.accessioned | 2017-04-27T03:15:10Z | |
dc.date.available | 2017-04-27T03:15:10Z | |
dc.date.issued | 2010 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/33953 | |
dc.description.abstract | V této práci zkoumáme metody, jak zlepšit kvalitu statistického strojového překladu použitím bohaté lingvistické informace. Nejdříve popíšeme SemPOS - metriku, která využívá mělké sémantické reprezentace vět k hodnocení kvality strojového překladu. Ukážeme, že i když tato metrika dosahuje vysoké korelace s lidskými hodnoceními kvality překladu, není samostatně vhodná pro optimalizaci parametrů systémů strojového překladu. Za druhé rozšíříme základní log-lineární model používaný ve statistickém strojovém překladu o kontextový model zdrojové věty, který pomáhá lépe rozlišovat mezi různými možnostmi překladu dané fráze a pomáhá vybrat nejvhodnější překlad pro daný kontext v aktuální větě. | cs_CZ |
dc.description.abstract | In this thesis we investigate several methods how to improve the quality of statistical machine translation (MT) by using linguistically rich information. First, we describe SemPOS, a metric that uses shallow semantic representation of sentences to evaluate the translation quality. We show that even though this metric has high correlation with human assessment of translation quality it is not directly suitable for system parameter optimization. Second, we extend the log-linear model used in statistical MT by additional source-context model that helps to better distinguish among possible translation options and select the most promising translation for a given context. | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | strojový překlad | cs_CZ |
dc.subject | hodnocení kvality | cs_CZ |
dc.subject | kontextový model | cs_CZ |
dc.subject | suffixové pole | cs_CZ |
dc.subject | machine translation | en_US |
dc.subject | quality evaluation | en_US |
dc.subject | source-context model | en_US |
dc.subject | suffix array | en_US |
dc.title | Rich Features in Phrase-Based Machine Translation | en_US |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2010 | |
dcterms.dateAccepted | 2010-09-06 | |
dc.description.department | Institute of Formal and Applied Linguistics | en_US |
dc.description.department | Ústav formální a aplikované lingvistiky | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 62749 | |
dc.title.translated | Bohaté rysy ve frázovém strojovém překladu | cs_CZ |
dc.contributor.referee | Žabokrtský, Zdeněk | |
dc.identifier.aleph | 001384355 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Computational Linguistics | en_US |
thesis.degree.discipline | Matematická lingvistika | cs_CZ |
thesis.degree.program | Computer Science | en_US |
thesis.degree.program | Informatika | cs_CZ |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Ústav formální a aplikované lingvistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Institute of Formal and Applied Linguistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Matematická lingvistika | cs_CZ |
uk.degree-discipline.en | Computational Linguistics | en_US |
uk.degree-program.cs | Informatika | cs_CZ |
uk.degree-program.en | Computer Science | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | V této práci zkoumáme metody, jak zlepšit kvalitu statistického strojového překladu použitím bohaté lingvistické informace. Nejdříve popíšeme SemPOS - metriku, která využívá mělké sémantické reprezentace vět k hodnocení kvality strojového překladu. Ukážeme, že i když tato metrika dosahuje vysoké korelace s lidskými hodnoceními kvality překladu, není samostatně vhodná pro optimalizaci parametrů systémů strojového překladu. Za druhé rozšíříme základní log-lineární model používaný ve statistickém strojovém překladu o kontextový model zdrojové věty, který pomáhá lépe rozlišovat mezi různými možnostmi překladu dané fráze a pomáhá vybrat nejvhodnější překlad pro daný kontext v aktuální větě. | cs_CZ |
uk.abstract.en | In this thesis we investigate several methods how to improve the quality of statistical machine translation (MT) by using linguistically rich information. First, we describe SemPOS, a metric that uses shallow semantic representation of sentences to evaluate the translation quality. We show that even though this metric has high correlation with human assessment of translation quality it is not directly suitable for system parameter optimization. Second, we extend the log-linear model used in statistical MT by additional source-context model that helps to better distinguish among possible translation options and select the most promising translation for a given context. | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Ústav formální a aplikované lingvistiky | cs_CZ |
dc.identifier.lisID | 990013843550106986 | |