Zobrazit minimální záznam

Datové struktury pro různá rozdělení dat
dc.contributor.advisorKoubek, Václav
dc.creatorČunát, Vladimír
dc.date.accessioned2017-04-27T04:10:08Z
dc.date.available2017-04-27T04:10:08Z
dc.date.issued2010
dc.identifier.urihttp://hdl.handle.net/20.500.11956/34197
dc.description.abstractPráce se zabývá studiem problému predchudce, kde datová struktura udržuje dynamickou usporádanou množinu klícu. Krome prehledu nejduležitejších publikovaných výsledku ukazujeme podrobný popis konkrétní možnosti, jak lze docílit pravdepodobnostní úpravy van Emde Boasovy struktury. Tato úprava snižuje pametovou nárocnost na optimum, akorát stejné casové složitosti (log logN) již není dosahováno v nejhorším prípade, ale v amortizovaném ocekávaném prípade. Nejlepší ocekávaná amortizovaná složitost dosahovaná na tríde (s ; s1-d)-hladkých distribucí je rovna O(log log n). Kombinací známých technik dostáváme novou datovou strukturu, která dosahuje stejné složitosti, ale na širší tríde distribucí než bylo doposud možné. Navíc lze jako podstrukturu využít optimální amortizované rešení problému navržené Beamem a Fichem, což zarucí omezení amortizované složitosti nové struktury na asymptoticky optimální hodnotu rovnou p(log n/ log log n).cs_CZ
dc.description.abstractIn this thesis we study the predecessor problem, which consists of maintaining a dynamic ordered set of keys. After a survey of the most important published results, we provide a detailed description and analysis of a randomized variant of van Emde Boas tree structure. The variant achieves asymptotically optimal space usage, but the (log logN) time bounds are no longer worst-case but expected amortized. The best published expected amortized time bound that is achieved on the (s ; s1-d)-smooth class of distributions is equal to O(log log n). We combine the known techniques into a new structure that achieves the same time bound on a wider class of input distributions. Moreover, the new structure can utilize the optimal amortized structure proposed by Beame and Fich, which ensures that the amortized time complexity is also bound by the optimal p(log n/log log n).en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleDatové struktury pro různá rozdělení daten_US
dc.typediplomová prácecs_CZ
dcterms.created2010
dcterms.dateAccepted2010-09-13
dc.description.departmentDepartment of Theoretical Computer Science and Mathematical Logicen_US
dc.description.departmentKatedra teoretické informatiky a matematické logikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId78657
dc.title.translatedDatové struktury pro různá rozdělení datcs_CZ
dc.contributor.refereeMareš, Martin
dc.identifier.aleph001389698
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineTheoretical Computer Scienceen_US
thesis.degree.disciplineTeoretická informatikacs_CZ
thesis.degree.programComputer Scienceen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra teoretické informatiky a matematické logikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Theoretical Computer Science and Mathematical Logicen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csTeoretická informatikacs_CZ
uk.degree-discipline.enTheoretical Computer Scienceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csPráce se zabývá studiem problému predchudce, kde datová struktura udržuje dynamickou usporádanou množinu klícu. Krome prehledu nejduležitejších publikovaných výsledku ukazujeme podrobný popis konkrétní možnosti, jak lze docílit pravdepodobnostní úpravy van Emde Boasovy struktury. Tato úprava snižuje pametovou nárocnost na optimum, akorát stejné casové složitosti (log logN) již není dosahováno v nejhorším prípade, ale v amortizovaném ocekávaném prípade. Nejlepší ocekávaná amortizovaná složitost dosahovaná na tríde (s ; s1-d)-hladkých distribucí je rovna O(log log n). Kombinací známých technik dostáváme novou datovou strukturu, která dosahuje stejné složitosti, ale na širší tríde distribucí než bylo doposud možné. Navíc lze jako podstrukturu využít optimální amortizované rešení problému navržené Beamem a Fichem, což zarucí omezení amortizované složitosti nové struktury na asymptoticky optimální hodnotu rovnou p(log n/ log log n).cs_CZ
uk.abstract.enIn this thesis we study the predecessor problem, which consists of maintaining a dynamic ordered set of keys. After a survey of the most important published results, we provide a detailed description and analysis of a randomized variant of van Emde Boas tree structure. The variant achieves asymptotically optimal space usage, but the (log logN) time bounds are no longer worst-case but expected amortized. The best published expected amortized time bound that is achieved on the (s ; s1-d)-smooth class of distributions is equal to O(log log n). We combine the known techniques into a new structure that achieves the same time bound on a wider class of input distributions. Moreover, the new structure can utilize the optimal amortized structure proposed by Beame and Fich, which ensures that the amortized time complexity is also bound by the optimal p(log n/log log n).en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra teoretické informatiky a matematické logikycs_CZ
dc.identifier.lisID990013896980106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV