Zobrazit minimální záznam

Evoluční algoritmy pro strukturální učení neuronových sítí
dc.contributor.advisorNeruda, Roman
dc.creatorKasík, Pavel
dc.date.accessioned2017-04-27T04:12:42Z
dc.date.available2017-04-27T04:12:42Z
dc.date.issued2010
dc.identifier.urihttp://hdl.handle.net/20.500.11956/34209
dc.description.abstractNávrh topologie neouronových sítí je velmi komplikovaný problém, zejména když opustíme oblast standartních vrstevnatých sítí. Zajímavé řešení tohoto problému nám může poskytnou evoluční algoritmus. Jeden z možných evolucní algoritmů pro evoluci neuronových sítí je algoritmus NEAT. Cílem této práce je modi fikovat a vylepšit schopnosti algoritmu NEAT. Vylepšení jsou zaměřena na využití polohy neuronu ve struktuře sítě, zlepšení křížení a představení možnosti paralelizace algoritmu zachovávající jeho ideje i ideje NEATu.cs_CZ
dc.description.abstractDesigning neural networks topologies is s complicated problem when we consider general network structures. Evolutionary algorithm can provide us with interesting solutions of this problem. This work introduces an evolutionary algorithm for evolving neural networks. One of the possible algorithms for evolving neural networks is the NEAT algorithm. The goal of this work is to modify and enhance abilities of the NEAT algorithm. Improvements are focused on utilizing position of a neuron in network, improving crossover procedure and introducing solution of algorithm parallelization that preserve abilities of both NEAT and the new algorithm.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleEvoluční algoritmy pro strukturální učení neuronových sítíen_US
dc.typediplomová prácecs_CZ
dcterms.created2010
dcterms.dateAccepted2010-09-13
dc.description.departmentDepartment of Theoretical Computer Science and Mathematical Logicen_US
dc.description.departmentKatedra teoretické informatiky a matematické logikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId77183
dc.title.translatedEvoluční algoritmy pro strukturální učení neuronových sítícs_CZ
dc.contributor.refereeKudová, Petra
dc.identifier.aleph001389424
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineTheoretical Computer Scienceen_US
thesis.degree.disciplineTeoretická informatikacs_CZ
thesis.degree.programComputer Scienceen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra teoretické informatiky a matematické logikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Theoretical Computer Science and Mathematical Logicen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csTeoretická informatikacs_CZ
uk.degree-discipline.enTheoretical Computer Scienceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csNávrh topologie neouronových sítí je velmi komplikovaný problém, zejména když opustíme oblast standartních vrstevnatých sítí. Zajímavé řešení tohoto problému nám může poskytnou evoluční algoritmus. Jeden z možných evolucní algoritmů pro evoluci neuronových sítí je algoritmus NEAT. Cílem této práce je modi fikovat a vylepšit schopnosti algoritmu NEAT. Vylepšení jsou zaměřena na využití polohy neuronu ve struktuře sítě, zlepšení křížení a představení možnosti paralelizace algoritmu zachovávající jeho ideje i ideje NEATu.cs_CZ
uk.abstract.enDesigning neural networks topologies is s complicated problem when we consider general network structures. Evolutionary algorithm can provide us with interesting solutions of this problem. This work introduces an evolutionary algorithm for evolving neural networks. One of the possible algorithms for evolving neural networks is the NEAT algorithm. The goal of this work is to modify and enhance abilities of the NEAT algorithm. Improvements are focused on utilizing position of a neuron in network, improving crossover procedure and introducing solution of algorithm parallelization that preserve abilities of both NEAT and the new algorithm.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra teoretické informatiky a matematické logikycs_CZ
dc.identifier.lisID990013894240106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV