Zobrazit minimální záznam

Vstupní data a jejich význam pro vrstevnaté neuronové sítě
dc.contributor.advisorMrázová, Iveta
dc.creatorGabašová, Evelina
dc.date.accessioned2017-04-27T04:14:08Z
dc.date.available2017-04-27T04:14:08Z
dc.date.issued2010
dc.identifier.urihttp://hdl.handle.net/20.500.11956/34216
dc.description.abstractNeuronové sítě stále zůstávají konkurence schopným modelem v některých oblastech strojového učení. Jednou z jejich nevýhod je však jejich tendence k předurčení, která může vážne omezit jejich schopnost zobecňovat. V předložené práci studujeme různé regularizační techniky založené na vynucování interních reprezentací v neuronových sítích. Interní reprezentace jsou analyzovány na základě nového teoretického modelu založeného na teorii informace, ze kterého následně vychází regularizátor minimalizující entropii interníchh reprezentací. Tento regularizátor založený na minimalizaci entropie je výpočetne náročný a z tohoto důvodu je v práci použit především jako teoretická motivace. Z důvodu potřeby efektivnější a flexibilnejší regularizace byl navrhnut nový regularizátor založený na Gaussovském směsovém modelu aktivací neuronů. Tento model je srovnán s existujícími metodami vynucování interních reprezentací v experimentální části práce. Výsledky navrhnutého modelu jsou lepší především na klasifikačních úlohách.cs_CZ
dc.description.abstractIn the present work we study In some areas, artificial feed forward neural networks are still a competitive machine learning model. Unfortunately they tend to overfit the training data, which limits their ability to generalize. We study methods for regularization based on enforcing internal structure of the network. We analyze internal representations using a theoretical model based on information theory. Based on this study, we propose a regularizer that minimizes the overall entropy of internal representations. The entropy-based regularizer is computationally demanding and we use it primarily as a theoretical motivation. To develop an efficient and flexible implementation, we design a Gaussian mixture model of activations. In the experimental part, we compare our model with the existing work based on enforcement of internal representations. The presented Gaussian mixture model regularizer yields better results especially for classification tasks.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleVstupní data a jejich význam pro vrstevnaté neuronové sítěen_US
dc.typediplomová prácecs_CZ
dcterms.created2010
dcterms.dateAccepted2010-09-13
dc.description.departmentDepartment of Software Engineeringen_US
dc.description.departmentKatedra softwarového inženýrstvícs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId49154
dc.title.translatedVstupní data a jejich význam pro vrstevnaté neuronové sítěcs_CZ
dc.contributor.refereeIša, Jiří
dc.identifier.aleph001389699
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineTheoretical Computer Scienceen_US
thesis.degree.disciplineTeoretická informatikacs_CZ
thesis.degree.programComputer Scienceen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra softwarového inženýrstvícs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Software Engineeringen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csTeoretická informatikacs_CZ
uk.degree-discipline.enTheoretical Computer Scienceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csNeuronové sítě stále zůstávají konkurence schopným modelem v některých oblastech strojového učení. Jednou z jejich nevýhod je však jejich tendence k předurčení, která může vážne omezit jejich schopnost zobecňovat. V předložené práci studujeme různé regularizační techniky založené na vynucování interních reprezentací v neuronových sítích. Interní reprezentace jsou analyzovány na základě nového teoretického modelu založeného na teorii informace, ze kterého následně vychází regularizátor minimalizující entropii interníchh reprezentací. Tento regularizátor založený na minimalizaci entropie je výpočetne náročný a z tohoto důvodu je v práci použit především jako teoretická motivace. Z důvodu potřeby efektivnější a flexibilnejší regularizace byl navrhnut nový regularizátor založený na Gaussovském směsovém modelu aktivací neuronů. Tento model je srovnán s existujícími metodami vynucování interních reprezentací v experimentální části práce. Výsledky navrhnutého modelu jsou lepší především na klasifikačních úlohách.cs_CZ
uk.abstract.enIn the present work we study In some areas, artificial feed forward neural networks are still a competitive machine learning model. Unfortunately they tend to overfit the training data, which limits their ability to generalize. We study methods for regularization based on enforcing internal structure of the network. We analyze internal representations using a theoretical model based on information theory. Based on this study, we propose a regularizer that minimizes the overall entropy of internal representations. The entropy-based regularizer is computationally demanding and we use it primarily as a theoretical motivation. To develop an efficient and flexible implementation, we design a Gaussian mixture model of activations. In the experimental part, we compare our model with the existing work based on enforcement of internal representations. The presented Gaussian mixture model regularizer yields better results especially for classification tasks.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra softwarového inženýrstvícs_CZ
dc.identifier.lisID990013896990106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV