Zobrazit minimální záznam

Spaces of continuous functions with the pointwise topology
dc.contributor.advisorSpurný, Jiří
dc.creatorSlavata, Martin
dc.date.accessioned2017-04-27T05:08:15Z
dc.date.available2017-04-27T05:08:15Z
dc.date.issued2010
dc.identifier.urihttp://hdl.handle.net/20.500.11956/34469
dc.description.abstractNázev práce: Prostory spojitých funkcí v topologii bodové konvergence Autor: Martin Slavata Katedra: Katedra matematické analýzy Vedoucí diplomové práce: doc. RNDr. Jiří Spurný, Ph.D. e-mail vedoucího: Jiri.Spurny@mff.cuni.cz Abstrakt: Tato práce pojednává o vlastnostech prostorů spojitých funkcí s topologií bodové konvergence. Zaměřuje se zejména na charakteristiku kompaktních podmnožin těchto prostorů a na kompaktnost prostorů samotných. Popisuje vlastnosti Fremlinem zavedené třídy andělských prostorů a ukazuje, kdy do této třídy patří prostory spojitých funkcí s bodovou topologií (výsledek J. Orihuely). Tím a dalšími výsledky přináší zobecnění Grothendieckovy věty. Práce ukazuje i omezení třídy andělských prostorů - totiž fakt, že tato třída není uzavřena na topologický součin. Na to navazuje další téma práce, tím je třída striktně andělských prostorů (pojem zavedl W. Govaerts) a její průnik s třídou prostorů spojitých funkcí. V závěru se práce zabývá kompaktností celého prostoru spojitých funkcí, ukazuje, kdy tento prostor vyhovuje definicím jednotlivých forem kompaktnosti. Klíčová slova: prostory spojitých funkcí; bodová konvergence; kompaktnost; andělskostcs_CZ
dc.description.abstractTitle: Spaces of continuous functions with the pointwise topology Author: Martin Slavata Department: Department of Mathematical Analysis Supervisor: doc. RNDr. Jiří Spurný, Ph.D. Supervisor's e-mail address: Jiri.Spurny@mff.cuni.cz Abstract: This thesis describes properties of spaces of continuous functions with the topology of pointwise convergence. Emphasis is put on characterizations of compact subsets of such spaces and on compactness of the spaces themselves. The thesis describes properties of the class of angelic spaces (notion by Fremlin) and shows when spaces of continuous functions with pointwise topology belong to this class (result by J. Orihuela). Thus a generalization of a theorem of Grothendieck is obtained. Also a limitation of the class of angelic spaces is shown - it is not closed under topological product. This leads to the next topic of the thesis, the class of strictly angelic spaces (introduced by W. Govaerts) and its intersection with the class of spaces of continuous functions with pointwise topology. In the end the thesis shows under which conditions the space of continuous functions satisfies the definition of the respective notions related to compactness. Keywords: spaces of continuous functions; pointwise convergence; compactness; angelicityen_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleProstory spojitých funkcí v topologii bodové konvergencecs_CZ
dc.typediplomová prácecs_CZ
dcterms.created2010
dcterms.dateAccepted2010-09-08
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId47556
dc.title.translatedSpaces of continuous functions with the pointwise topologyen_US
dc.contributor.refereeKalenda, Ondřej
dc.identifier.aleph001559939
thesis.degree.nameMgr.
thesis.degree.levelmagisterskécs_CZ
thesis.degree.disciplineMathematical Analysisen_US
thesis.degree.disciplineMatematická analýzacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra matematické analýzycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematical Analysisen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická analýzacs_CZ
uk.degree-discipline.enMathematical Analysisen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csDobřecs_CZ
thesis.grade.enGooden_US
uk.abstract.csNázev práce: Prostory spojitých funkcí v topologii bodové konvergence Autor: Martin Slavata Katedra: Katedra matematické analýzy Vedoucí diplomové práce: doc. RNDr. Jiří Spurný, Ph.D. e-mail vedoucího: Jiri.Spurny@mff.cuni.cz Abstrakt: Tato práce pojednává o vlastnostech prostorů spojitých funkcí s topologií bodové konvergence. Zaměřuje se zejména na charakteristiku kompaktních podmnožin těchto prostorů a na kompaktnost prostorů samotných. Popisuje vlastnosti Fremlinem zavedené třídy andělských prostorů a ukazuje, kdy do této třídy patří prostory spojitých funkcí s bodovou topologií (výsledek J. Orihuely). Tím a dalšími výsledky přináší zobecnění Grothendieckovy věty. Práce ukazuje i omezení třídy andělských prostorů - totiž fakt, že tato třída není uzavřena na topologický součin. Na to navazuje další téma práce, tím je třída striktně andělských prostorů (pojem zavedl W. Govaerts) a její průnik s třídou prostorů spojitých funkcí. V závěru se práce zabývá kompaktností celého prostoru spojitých funkcí, ukazuje, kdy tento prostor vyhovuje definicím jednotlivých forem kompaktnosti. Klíčová slova: prostory spojitých funkcí; bodová konvergence; kompaktnost; andělskostcs_CZ
uk.abstract.enTitle: Spaces of continuous functions with the pointwise topology Author: Martin Slavata Department: Department of Mathematical Analysis Supervisor: doc. RNDr. Jiří Spurný, Ph.D. Supervisor's e-mail address: Jiri.Spurny@mff.cuni.cz Abstract: This thesis describes properties of spaces of continuous functions with the topology of pointwise convergence. Emphasis is put on characterizations of compact subsets of such spaces and on compactness of the spaces themselves. The thesis describes properties of the class of angelic spaces (notion by Fremlin) and shows when spaces of continuous functions with pointwise topology belong to this class (result by J. Orihuela). Thus a generalization of a theorem of Grothendieck is obtained. Also a limitation of the class of angelic spaces is shown - it is not closed under topological product. This leads to the next topic of the thesis, the class of strictly angelic spaces (introduced by W. Govaerts) and its intersection with the class of spaces of continuous functions with pointwise topology. In the end the thesis shows under which conditions the space of continuous functions satisfies the definition of the respective notions related to compactness. Keywords: spaces of continuous functions; pointwise convergence; compactness; angelicityen_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ
dc.identifier.lisID990015599390106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV