Zobrazit minimální záznam

Models and statistical analysis of record processes
dc.contributor.advisorVolf, Petr
dc.creatorTůmová, Alena
dc.date.accessioned2017-04-27T12:21:22Z
dc.date.available2017-04-27T12:21:22Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/20.500.11956/36199
dc.description.abstractV této práci modelujeme historický vývoj nejlepších výsledků v běhu na 100, 200, 400 a 800m mužů. Předpokládáme, že nejlepší výsledky jednotlivých let jsou nezávislé náhodné veličiny se zobecněným rozdělením extrémních hodnot pro minima a s klesajícím trendem v parametru polohy. Parametry modelů odhadujeme metodou maximální věrohodnosti. Pro některé roky data o nejlepších výsledcích chybí, s takovými daty zacházíme jako s daty cenzorovanými zprava hodnotami tehdy platných rekordů. Tomu jsou přizpůsobeny i grafické nástroje použité pro diagnostiku modelů. Získané modely pak využíváme při odhadu ultimátních rekordů a také při predikci nových rekordů do dalších let. Na závěr odhadujeme několik modelů, které popisují historický vývoj nejlepších výsledků jednotlivých let pro několik délek běhů najednou.cs_CZ
dc.description.abstractIn this work we model the historical development of best performances in men's 100, 200, 400 and 800m running events. We suppose that the years best performances are independent random variables with generalized extreme value distribution for minima and that there is a decreasing trend in location. Parameters of the models are estimated by using maximum likelihood techniques. The data of years best performances are missing for some years, we treat them as right censored data that are censored by value of world record valid at that time. Graphic tools used for models diagnostics are adjusted to the censoring. The models we get are used to estimate the ultimate records and to predict new records in next years. At the end of the work we estimate several models describing historical development of years best performances for more events at one time.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectsportovní rekordycs_CZ
dc.subjectběhcs_CZ
dc.subjectzobecněné rozdělení extrémních hodnot pro minimacs_CZ
dc.subjectchybějící datacs_CZ
dc.subjectsports recordsen_US
dc.subjectrunningen_US
dc.subjectgeneralized extreme value distribution for minimaen_US
dc.subjectmissing dataen_US
dc.titleModely a statistická analýza procesu rekordůcs_CZ
dc.typediplomová prácecs_CZ
dcterms.created2011
dcterms.dateAccepted2011-05-09
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId77081
dc.title.translatedModels and statistical analysis of record processesen_US
dc.contributor.refereeHlubinka, Daniel
dc.identifier.aleph001360016
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineProbability, mathematical statistics and econometricsen_US
thesis.degree.disciplinePravděpodobnost, matematická statistika a ekonometriecs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csPravděpodobnost, matematická statistika a ekonometriecs_CZ
uk.degree-discipline.enProbability, mathematical statistics and econometricsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV této práci modelujeme historický vývoj nejlepších výsledků v běhu na 100, 200, 400 a 800m mužů. Předpokládáme, že nejlepší výsledky jednotlivých let jsou nezávislé náhodné veličiny se zobecněným rozdělením extrémních hodnot pro minima a s klesajícím trendem v parametru polohy. Parametry modelů odhadujeme metodou maximální věrohodnosti. Pro některé roky data o nejlepších výsledcích chybí, s takovými daty zacházíme jako s daty cenzorovanými zprava hodnotami tehdy platných rekordů. Tomu jsou přizpůsobeny i grafické nástroje použité pro diagnostiku modelů. Získané modely pak využíváme při odhadu ultimátních rekordů a také při predikci nových rekordů do dalších let. Na závěr odhadujeme několik modelů, které popisují historický vývoj nejlepších výsledků jednotlivých let pro několik délek běhů najednou.cs_CZ
uk.abstract.enIn this work we model the historical development of best performances in men's 100, 200, 400 and 800m running events. We suppose that the years best performances are independent random variables with generalized extreme value distribution for minima and that there is a decreasing trend in location. Parameters of the models are estimated by using maximum likelihood techniques. The data of years best performances are missing for some years, we treat them as right censored data that are censored by value of world record valid at that time. Graphic tools used for models diagnostics are adjusted to the censoring. The models we get are used to estimate the ultimate records and to predict new records in next years. At the end of the work we estimate several models describing historical development of years best performances for more events at one time.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
dc.identifier.lisID990013600160106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV