Zobrazit minimální záznam

Univerzální doporučovací systém
dc.contributor.advisorVojtáš, Peter
dc.creatorCvengroš, Petr
dc.date.accessioned2017-04-27T12:32:29Z
dc.date.available2017-04-27T12:32:29Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/20.500.11956/36242
dc.description.abstractDoporučovací systémy jsou programy, které se uživateli nabízejí objekty (např. knihy nebo hudbu), které by pro něj mohly být zajímavé. Tyto systémy získávají vzrůstající popularitu a jsou intenzivně studovány výzkumnými skupinami po celém světě. Ve webových systémech, jako jsou internetové obchody nebo komunitní servery, bývají obvykle k dispozici různé datové zdroje, které mohou být využity k doporučování, např. atributy uživatelů a objektů, hodnocení objektů uživateli nebo nepřímá zpětná vazba získaná ze zaznamenaného chování uživatele. V této práci představujeme koncept Univerzálního doporučovacího systému (Unresyst), který dokáže využít těchto datových zdrojů a zároveň je doménově nezávislý. V práci navrhujeme způsoby využití systému Unresyst, ze současných metod používaných k doporučování vybíráme jako nejvíce vhodnou knowledge-based metodu kombinovanou s kolaborativním filtrováním. Dále analyzujeme datové zdroje v různých systémech a zobecňujeme je tak, aby byly doménově nezávislé. Navrhujeme architekturu systému Unresyst, popisujeme rozhraní systému a způsoby zpracování datových zdrojů. Dále přizpůsobujeme Unresyst na tři data sety z reálných systémů, vyhodnocujeme přesnost doporučení a srovnáváme ji se současnými algoritmy pro kolaborativní filtrování. Srovnání ukazuje, že kombinování různých...cs_CZ
dc.description.abstractRecommender systems are programs that aim to present items like songs or books that are likely to be interesting for a user. These systems have become increasingly popular and are intensively studied by research groups all over the world. In web systems, like e-shops or community servers there are usually multiple data sources we can use for recommending, as user and item attributes, user-item rating or implicit feedback from user behaviour. In the thesis, we present a concept of a Universal Recommender System (Unresyst) that can use these data sources and is domain-independent at the same time. We propose how Unresyst can be used. From the contemporary methods of recommending, we choose a knowledge based algorithm combined with collaborative filtering as the most appropriate algorithm for Unresyst. We analyze data sources in various systems and generalize them to be domain-independent. We design the architecture of Unresyst, describe its interfaces and methods for processing the data sources. We adapt Unresyst to three real-world data sets, evaluate the recommendation accuracy results and compare them to a contemporary collaborative filtering recommender. The comparison shows that combining multiple data sources can improve the accuracy of collaborative filtering algorithms and can be used in systems where...en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectDoporučovací systémycs_CZ
dc.subjectInternetové obchodovánícs_CZ
dc.subjectDoménová nezávislostcs_CZ
dc.subjectKnowledge-based doporučovánícs_CZ
dc.subjectKolaborativní filtrovánícs_CZ
dc.subjectRecommender Systemsen_US
dc.subjectE-commerceen_US
dc.subjectDomain-Independenceen_US
dc.subjectKnowledge-Based Recommenderen_US
dc.subjectCollaborative Filteringen_US
dc.titleUniverzální doporučovací systémen_US
dc.typediplomová prácecs_CZ
dcterms.created2011
dcterms.dateAccepted2011-05-30
dc.description.departmentDepartment of Software Engineeringen_US
dc.description.departmentKatedra softwarového inženýrstvícs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId85227
dc.title.translatedUniverzální doporučovací systémcs_CZ
dc.contributor.refereeDědek, Jan
dc.identifier.aleph001363968
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineSoftware Systemsen_US
thesis.degree.disciplineSoftwarové systémycs_CZ
thesis.degree.programComputer Scienceen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra softwarového inženýrstvícs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Software Engineeringen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csSoftwarové systémycs_CZ
uk.degree-discipline.enSoftware Systemsen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csDoporučovací systémy jsou programy, které se uživateli nabízejí objekty (např. knihy nebo hudbu), které by pro něj mohly být zajímavé. Tyto systémy získávají vzrůstající popularitu a jsou intenzivně studovány výzkumnými skupinami po celém světě. Ve webových systémech, jako jsou internetové obchody nebo komunitní servery, bývají obvykle k dispozici různé datové zdroje, které mohou být využity k doporučování, např. atributy uživatelů a objektů, hodnocení objektů uživateli nebo nepřímá zpětná vazba získaná ze zaznamenaného chování uživatele. V této práci představujeme koncept Univerzálního doporučovacího systému (Unresyst), který dokáže využít těchto datových zdrojů a zároveň je doménově nezávislý. V práci navrhujeme způsoby využití systému Unresyst, ze současných metod používaných k doporučování vybíráme jako nejvíce vhodnou knowledge-based metodu kombinovanou s kolaborativním filtrováním. Dále analyzujeme datové zdroje v různých systémech a zobecňujeme je tak, aby byly doménově nezávislé. Navrhujeme architekturu systému Unresyst, popisujeme rozhraní systému a způsoby zpracování datových zdrojů. Dále přizpůsobujeme Unresyst na tři data sety z reálných systémů, vyhodnocujeme přesnost doporučení a srovnáváme ji se současnými algoritmy pro kolaborativní filtrování. Srovnání ukazuje, že kombinování různých...cs_CZ
uk.abstract.enRecommender systems are programs that aim to present items like songs or books that are likely to be interesting for a user. These systems have become increasingly popular and are intensively studied by research groups all over the world. In web systems, like e-shops or community servers there are usually multiple data sources we can use for recommending, as user and item attributes, user-item rating or implicit feedback from user behaviour. In the thesis, we present a concept of a Universal Recommender System (Unresyst) that can use these data sources and is domain-independent at the same time. We propose how Unresyst can be used. From the contemporary methods of recommending, we choose a knowledge based algorithm combined with collaborative filtering as the most appropriate algorithm for Unresyst. We analyze data sources in various systems and generalize them to be domain-independent. We design the architecture of Unresyst, describe its interfaces and methods for processing the data sources. We adapt Unresyst to three real-world data sets, evaluate the recommendation accuracy results and compare them to a contemporary collaborative filtering recommender. The comparison shows that combining multiple data sources can improve the accuracy of collaborative filtering algorithms and can be used in systems where...en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra softwarového inženýrstvícs_CZ
dc.identifier.lisID990013639680106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV