dc.contributor.advisor | Honzl, Ondřej | |
dc.creator | Stroganov, Vladimír | |
dc.date.accessioned | 2017-04-27T16:34:01Z | |
dc.date.available | 2017-04-27T16:34:01Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/37143 | |
dc.description.abstract | V této bakalářské práci se zabýváme základy teorie náhodných množin. Definujeme v ní takové pojmy, jako kapacitní fukcionál, selekce, měřitelná a integrovatelná multifunkce, Castaingova reprezentace a Auman- nova střední hodnota náhodné uzavřené množiny. Uvedeme Choquetovu větu o vztahu kapacitních funkcionálů a náhodných množin, Himmelbergovu větu o měřitelnosti, věty o vlastnostech selekcí a střední hodnoty. Teorii do- plníme příklady, které demonstrují danou problematiku. 1 | cs_CZ |
dc.description.abstract | In this bachelor thesis we are concerned with basic knowledge in random set theory. We define here such terms, as capacity functional, se- lection, measurable and integrable multifunction, Castaing representation and Aumann expectation of random closed set. We present Choquet theo- rem, Himmelberg measurability theorem, theorems of properties of selections and expectation. We present also several examples which illustrate the the- ory. 1 | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | Náhodné množiny | cs_CZ |
dc.subject | multifunkce | cs_CZ |
dc.subject | Aumannova střední hodnota | cs_CZ |
dc.subject | Random sets | en_US |
dc.subject | multifunctions | en_US |
dc.subject | Aumann expectation | en_US |
dc.title | Náhodné uzavřené množiny | cs_CZ |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2011 | |
dcterms.dateAccepted | 2011-01-26 | |
dc.description.department | Department of Probability and Mathematical Statistics | en_US |
dc.description.department | Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 76381 | |
dc.title.translated | Random closed sets | en_US |
dc.contributor.referee | Rataj, Jan | |
dc.identifier.aleph | 001284305 | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | General Mathematics | en_US |
thesis.degree.discipline | Obecná matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Probability and Mathematical Statistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná matematika | cs_CZ |
uk.degree-discipline.en | General Mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Velmi dobře | cs_CZ |
thesis.grade.en | Very good | en_US |
uk.abstract.cs | V této bakalářské práci se zabýváme základy teorie náhodných množin. Definujeme v ní takové pojmy, jako kapacitní fukcionál, selekce, měřitelná a integrovatelná multifunkce, Castaingova reprezentace a Auman- nova střední hodnota náhodné uzavřené množiny. Uvedeme Choquetovu větu o vztahu kapacitních funkcionálů a náhodných množin, Himmelbergovu větu o měřitelnosti, věty o vlastnostech selekcí a střední hodnoty. Teorii do- plníme příklady, které demonstrují danou problematiku. 1 | cs_CZ |
uk.abstract.en | In this bachelor thesis we are concerned with basic knowledge in random set theory. We define here such terms, as capacity functional, se- lection, measurable and integrable multifunction, Castaing representation and Aumann expectation of random closed set. We present Choquet theo- rem, Himmelberg measurability theorem, theorems of properties of selections and expectation. We present also several examples which illustrate the the- ory. 1 | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.identifier.lisID | 990012843050106986 | |