Zobrazit minimální záznam

Handwriting recognition using neural network
dc.contributor.advisorSurynek, Pavel
dc.creatorPetr, Martin
dc.date.accessioned2017-04-27T18:16:30Z
dc.date.available2017-04-27T18:16:30Z
dc.date.issued2010
dc.identifier.urihttp://hdl.handle.net/20.500.11956/37574
dc.description.abstractNázev práce: Rozpoznávání rukopisu pomocí neuronové sítě Autor: Martin Petr Katedra (ústav): Katedra teoretické informatiky a matematické logiky Vedoucí bakalářské práce: RNDr. Pavel Surynek, PhD. e-mail vedoucího: pavel.surynek@mff.cuni.cz Abstrakt: Rozpoznávání vzorů nalézá uplatnění v mnoha oborech, do jejichž vývoje zasáhla informatika či výpočetní technika. Výsadní postavení má v tomto ohledu zejména její aplikace na převod tištěného či rukou psaného textu do běžného textu v digitální podobě. V následující práci předkládáme metodu pro rozpoznávání rukou psaných znaků v reálném čase s využitím dopředné neuronové sítě jako základního klasifikačního mechanismu. Vzhledem k tomu, že se jednotlivé rukou psané varianty každého znaku vyznačují vzájemnými odlišnostmi, prozkoumali jsme důkladně možnosti potlačení těchto odlišností při zdůraznění charakteristik, které jsou pro rozpoznání daného znaku důležité. Pro tyto účely byla zvolena diskrétní kosinová transformace, jejíž osvědčenost při zpracování zvukového a obrazového signálu či přímo v oblasti rozpoznávání vzorů byla přesvědčivým argumentem i pro její využití v naší práci. V úvahu jsme vzali rovněž rozdíly mezi odlišnými psacími potřebami, pro jejichž potlačení jsme navrhli předzpracování vstupních dat v podobě binarizace a skeletonizace. Námi navržená...cs_CZ
dc.description.abstractTitle: Handwriting recognition using neural network Author: Martin Petr Department: Department of Theoretical Computer Science and Mathematical Logic Supervisor: RNDr. Pavel Surynek, PhD. Supervisor's e-mail address: pavel.surynek@mff.cuni.cz Abstract: Pattern recognition finds its use in many fields whose development has been affected by computer science and computer technology. Among these, the conversion of handwritten or printed text into computer-encoded text has a particularly prominent position. In the presented work we propose a method for recognizing handwritten characters in real-time using feedforward neural network as the basic classification mechanism. Dealing with differences among individual instances of each handwritten character we thoroughly explored the possibility of suppressing these while emphasizing characteristics that are essential for successful recognition. For these purposes we employed discrete cosine transform, whose time-proven application in audio and video signal processing or even directly in the field of pattern recognition provided a convincing argument for us to use it in our work as well. As a means of suppressing variations among various writing instruments we proposed preprocessing of input images using binarization and skeletonization. The designed method was...en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectrozpoznávání vzorůcs_CZ
dc.subjectoptické rozpoznávání znakůcs_CZ
dc.subjectumělé neuronové sítěcs_CZ
dc.subjectbinarizacecs_CZ
dc.subjectskeletonizacecs_CZ
dc.subjectdiskrétní kosinová transformacecs_CZ
dc.subjectpattern recognitionen_US
dc.subjectoptical character recognitionen_US
dc.subjectartificial neural networksen_US
dc.subjectbinarizationen_US
dc.subjectskeletonizationen_US
dc.subjectdiscrete cosine transformen_US
dc.titleRozpoznávání rukopisu pomocí neuronové sítěcs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2010
dcterms.dateAccepted2010-09-17
dc.description.departmentDepartment of Theoretical Computer Science and Mathematical Logicen_US
dc.description.departmentKatedra teoretické informatiky a matematické logikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId65820
dc.title.translatedHandwriting recognition using neural networken_US
dc.contributor.refereePergel, Martin
dc.identifier.aleph001392701
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Computer Scienceen_US
thesis.degree.disciplineObecná informatikacs_CZ
thesis.degree.programComputer Scienceen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra teoretické informatiky a matematické logikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Theoretical Computer Science and Mathematical Logicen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná informatikacs_CZ
uk.degree-discipline.enGeneral Computer Scienceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csNázev práce: Rozpoznávání rukopisu pomocí neuronové sítě Autor: Martin Petr Katedra (ústav): Katedra teoretické informatiky a matematické logiky Vedoucí bakalářské práce: RNDr. Pavel Surynek, PhD. e-mail vedoucího: pavel.surynek@mff.cuni.cz Abstrakt: Rozpoznávání vzorů nalézá uplatnění v mnoha oborech, do jejichž vývoje zasáhla informatika či výpočetní technika. Výsadní postavení má v tomto ohledu zejména její aplikace na převod tištěného či rukou psaného textu do běžného textu v digitální podobě. V následující práci předkládáme metodu pro rozpoznávání rukou psaných znaků v reálném čase s využitím dopředné neuronové sítě jako základního klasifikačního mechanismu. Vzhledem k tomu, že se jednotlivé rukou psané varianty každého znaku vyznačují vzájemnými odlišnostmi, prozkoumali jsme důkladně možnosti potlačení těchto odlišností při zdůraznění charakteristik, které jsou pro rozpoznání daného znaku důležité. Pro tyto účely byla zvolena diskrétní kosinová transformace, jejíž osvědčenost při zpracování zvukového a obrazového signálu či přímo v oblasti rozpoznávání vzorů byla přesvědčivým argumentem i pro její využití v naší práci. V úvahu jsme vzali rovněž rozdíly mezi odlišnými psacími potřebami, pro jejichž potlačení jsme navrhli předzpracování vstupních dat v podobě binarizace a skeletonizace. Námi navržená...cs_CZ
uk.abstract.enTitle: Handwriting recognition using neural network Author: Martin Petr Department: Department of Theoretical Computer Science and Mathematical Logic Supervisor: RNDr. Pavel Surynek, PhD. Supervisor's e-mail address: pavel.surynek@mff.cuni.cz Abstract: Pattern recognition finds its use in many fields whose development has been affected by computer science and computer technology. Among these, the conversion of handwritten or printed text into computer-encoded text has a particularly prominent position. In the presented work we propose a method for recognizing handwritten characters in real-time using feedforward neural network as the basic classification mechanism. Dealing with differences among individual instances of each handwritten character we thoroughly explored the possibility of suppressing these while emphasizing characteristics that are essential for successful recognition. For these purposes we employed discrete cosine transform, whose time-proven application in audio and video signal processing or even directly in the field of pattern recognition provided a convincing argument for us to use it in our work as well. As a means of suppressing variations among various writing instruments we proposed preprocessing of input images using binarization and skeletonization. The designed method was...en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra teoretické informatiky a matematické logikycs_CZ
dc.identifier.lisID990013927010106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV