Zobrazit minimální záznam

Classic problems in combinatorics
dc.contributor.advisorSlavík, Antonín
dc.creatorStodolová, Kristýna
dc.date.accessioned2017-05-06T16:27:57Z
dc.date.available2017-05-06T16:27:57Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/20.500.11956/39759
dc.description.abstractPráce se věnuje pěti úlohám z kombinatoriky. V úloze o zajatcích je odpovídáno na otázku, který ze zajatců zůstane nejdéle, je-li postupně popravován každý druhý (q-tý), přičemž zajatci stojí v kruhu nebo v řadě a případně mají více životů. V úloze o hanojských věžích jsou zkoumány počty a vlastnosti tahů při přenášení kotoučů mezi třemi nebo čtyřmi kolíky, včetně omezení přípustných tahů. V úloze o hostech je odvozen vztah pro počet rozesazení manželských párů kolem stolu tak, aby žádný pár neseděl vedle sebe a ženy a muži se střídali. Následuje její zobecnění na permutace s omezujícími podmínkami a s nimi spjaté věžové polynomy. U hlasovacího problému je popsáno několik možností, jak určit pravděpodobnost, že jeden z kandidátů měl po celou dobu sčítání hlasovacích lístků aspoň k- krát víc hlasů než druhý. Následuje varianta úlohy vedoucí na Catalanova čísla. V úloze o školačkách je ukázáno několik způsobů sestavení týdenního rozpisu vycházek patnácti dívek ve trojicích tak, aby spolu žádné dvě nešly vícekrát. Následuje zobecnění (úloha o golfistech) a Schurigovy tabulky.cs_CZ
dc.description.abstractThis work is concerned with five problems in combinatorics. In Josephus problem, people are standing in a circle or in a row and every q-th is executed until only one person remains. We show how to find the survivor, and discuss the generalization when each person has more lives. In Tower of Hanoi, we study the numbers and properties of moves necessary to transport the tower from one rod to another, where the total number of rods is either three or four. We mention related problems with restrictions on the legal moves. In ménage problem, we calculate the number of seatings of couples around a table such that men and women alternate and nobody sits next to his or her partner. We also discuss permutations with restricted positions and rook polynomials. In ballot problem, we consider two candidates competing against each other and calculate the probability that, throughout the count, the first candidate always had more votes than k times the number of votes of the second one; we also mention the relation to Catalan numbers. In Kirkman's schoolgirl problem, the task is to find a weekly schedule for fifteen girls walking daily out in triads so that no two go together more than once. We also discuss the social golfer problem and Schurig's tables.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectúloha o zajatcíchcs_CZ
dc.subjecthanojské věžecs_CZ
dc.subjectúloha o hostechcs_CZ
dc.subjecthlasovací problémcs_CZ
dc.subjectúloha o školačkáchcs_CZ
dc.subjectJosephus problemen_US
dc.subjectTower of Hanoien_US
dc.subjectménage problemen_US
dc.subjectballot problemen_US
dc.subjectKirkman's schoolgirl problemen_US
dc.titleKlasické kombinatorické úlohycs_CZ
dc.typediplomová prácecs_CZ
dcterms.created2012
dcterms.dateAccepted2012-05-21
dc.description.departmentDepartment of Mathematics Educationen_US
dc.description.departmentKatedra didaktiky matematikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId76620
dc.title.translatedClassic problems in combinatoricsen_US
dc.contributor.refereeCalda, Emil
dc.identifier.aleph001466883
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineTraining Teachers of Mathematics and Computer Science at Higher Secondary Schoolsen_US
thesis.degree.disciplineUčitelství matematiky - informatiky pro střední školycs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra didaktiky matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematics Educationen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csUčitelství matematiky - informatiky pro střední školycs_CZ
uk.degree-discipline.enTraining Teachers of Mathematics and Computer Science at Higher Secondary Schoolsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csPráce se věnuje pěti úlohám z kombinatoriky. V úloze o zajatcích je odpovídáno na otázku, který ze zajatců zůstane nejdéle, je-li postupně popravován každý druhý (q-tý), přičemž zajatci stojí v kruhu nebo v řadě a případně mají více životů. V úloze o hanojských věžích jsou zkoumány počty a vlastnosti tahů při přenášení kotoučů mezi třemi nebo čtyřmi kolíky, včetně omezení přípustných tahů. V úloze o hostech je odvozen vztah pro počet rozesazení manželských párů kolem stolu tak, aby žádný pár neseděl vedle sebe a ženy a muži se střídali. Následuje její zobecnění na permutace s omezujícími podmínkami a s nimi spjaté věžové polynomy. U hlasovacího problému je popsáno několik možností, jak určit pravděpodobnost, že jeden z kandidátů měl po celou dobu sčítání hlasovacích lístků aspoň k- krát víc hlasů než druhý. Následuje varianta úlohy vedoucí na Catalanova čísla. V úloze o školačkách je ukázáno několik způsobů sestavení týdenního rozpisu vycházek patnácti dívek ve trojicích tak, aby spolu žádné dvě nešly vícekrát. Následuje zobecnění (úloha o golfistech) a Schurigovy tabulky.cs_CZ
uk.abstract.enThis work is concerned with five problems in combinatorics. In Josephus problem, people are standing in a circle or in a row and every q-th is executed until only one person remains. We show how to find the survivor, and discuss the generalization when each person has more lives. In Tower of Hanoi, we study the numbers and properties of moves necessary to transport the tower from one rod to another, where the total number of rods is either three or four. We mention related problems with restrictions on the legal moves. In ménage problem, we calculate the number of seatings of couples around a table such that men and women alternate and nobody sits next to his or her partner. We also discuss permutations with restricted positions and rook polynomials. In ballot problem, we consider two candidates competing against each other and calculate the probability that, throughout the count, the first candidate always had more votes than k times the number of votes of the second one; we also mention the relation to Catalan numbers. In Kirkman's schoolgirl problem, the task is to find a weekly schedule for fifteen girls walking daily out in triads so that no two go together more than once. We also discuss the social golfer problem and Schurig's tables.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra didaktiky matematikycs_CZ
dc.identifier.lisID990014668830106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV