Zobrazit minimální záznam

Valuation of financial derivatives
dc.contributor.advisorHurt, Jan
dc.creatorMatušková, Radka
dc.date.accessioned2017-05-06T17:19:59Z
dc.date.available2017-05-06T17:19:59Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/20.500.11956/39841
dc.description.abstractV předložené práci se věnujeme několika možným přístupům, jak ohodnotit finanční deriváty. V první části práce se seznámíme se základními typy derivá- tů a jak se s nimi obchoduje. Dále si ukážeme několik modelů pro hodnocení konkrétního finančního derivátu - opce. Jako první si podrobně popíšeme Black- Scholesův model, který uvažuje, že vývoj ceny podkladového aktiva se řídí dle Wienerova procesu. Následovat budou tzv. skokově difuzní modely, které jsou rozšířením Black-Scholesova modelu o skoky. Po té se dostaneme ke skokovým modelům, které jsou založeny na Lévyho procesech. Nakonec se budeme věnovat modelu, který uvažuje, že vývoj ceny podkladového aktiva se řídí podle frakci- onálního Brownova pohybu s Hurstovým koeficientem větším než 1/2. Všechny modely jsou doplněny ukázkovými příklady. 1cs_CZ
dc.description.abstractIn the present thesis we deal with several possible approaches to financial de- rivatives pricing. In the first part, we introduce the basic types of derivatives and the methods of trading. Furthermore, we present several models for the valuati- on of specific financial derivative, i.e. options. Firstly we describe Black-Scholes model in detail, which considers that the development of the underlying asset price is governed by Wiener process. Following are the jumps diffusion models that are extension of the Black-Scholes model with jumps. Then we get to jump models, which are based on Lévy processes. Finally, we will deal with the model, which considers that the development of the underlying asset price is governed by fractional Brownian motion with Hurst's coefficient greater than 1/2. All models are suplemented with sample examples. 1en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectBlack-Scholesův modelcs_CZ
dc.subjectskokově difuzní modelycs_CZ
dc.subjectskokové modelycs_CZ
dc.subjectfrakcionální Brownův pohybcs_CZ
dc.subjectBlack-Scholes modelen_US
dc.subjectjumps-diffusion modelsen_US
dc.subjectjump modelsen_US
dc.subjectfractional Brownian motionen_US
dc.titleHodnocení finančních derivátůcs_CZ
dc.typediplomová prácecs_CZ
dcterms.created2012
dcterms.dateAccepted2012-05-28
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId81648
dc.title.translatedValuation of financial derivativesen_US
dc.contributor.refereeZichová, Jitka
dc.identifier.aleph001468861
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineFinancial and insurance mathematicsen_US
thesis.degree.disciplineFinanční a pojistná matematikacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csFinanční a pojistná matematikacs_CZ
uk.degree-discipline.enFinancial and insurance mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVelmi dobřecs_CZ
thesis.grade.enVery gooden_US
uk.abstract.csV předložené práci se věnujeme několika možným přístupům, jak ohodnotit finanční deriváty. V první části práce se seznámíme se základními typy derivá- tů a jak se s nimi obchoduje. Dále si ukážeme několik modelů pro hodnocení konkrétního finančního derivátu - opce. Jako první si podrobně popíšeme Black- Scholesův model, který uvažuje, že vývoj ceny podkladového aktiva se řídí dle Wienerova procesu. Následovat budou tzv. skokově difuzní modely, které jsou rozšířením Black-Scholesova modelu o skoky. Po té se dostaneme ke skokovým modelům, které jsou založeny na Lévyho procesech. Nakonec se budeme věnovat modelu, který uvažuje, že vývoj ceny podkladového aktiva se řídí podle frakci- onálního Brownova pohybu s Hurstovým koeficientem větším než 1/2. Všechny modely jsou doplněny ukázkovými příklady. 1cs_CZ
uk.abstract.enIn the present thesis we deal with several possible approaches to financial de- rivatives pricing. In the first part, we introduce the basic types of derivatives and the methods of trading. Furthermore, we present several models for the valuati- on of specific financial derivative, i.e. options. Firstly we describe Black-Scholes model in detail, which considers that the development of the underlying asset price is governed by Wiener process. Following are the jumps diffusion models that are extension of the Black-Scholes model with jumps. Then we get to jump models, which are based on Lévy processes. Finally, we will deal with the model, which considers that the development of the underlying asset price is governed by fractional Brownian motion with Hurst's coefficient greater than 1/2. All models are suplemented with sample examples. 1en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
dc.identifier.lisID990014688610106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV