dc.contributor.advisor | Spurný, Jiří | |
dc.creator | Rolínek, Michal | |
dc.date.accessioned | 2017-05-06T17:20:33Z | |
dc.date.available | 2017-05-06T17:20:33Z | |
dc.date.issued | 2012 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/39843 | |
dc.description.abstract | V této práci se zabýváme kvantitativní slabou kompaktností v prostorech C(K) s topologií τp a posléze v prostorech Banachových. V úvodní kapitole zavedeme několik veličin, které různým způsobem vyjadřují míru τp-nekompaktnosti dané stejnoměrně ome- zené množiny H ⊂ RK . Poznatky pak aplikujeme v Banachových prostorech, v nichž se v kapitole 2 podaří dokázat mimo jiné kvantitativní verzi Eberlein-Šmuljanovy věty. Ve třetí kapitole zkoumáme, jak se mění míry nekompaktnosti při přechodu ke konvexním obalům. Dokážeme v ní například kvantitativní verzi Krejn-Šmuljanovy věty. V prvních třech kapitolách se ukáže, že míry nekompaktnosti přirozeně souvisí se vzdáleností dané f ∈ RK od spojitých funkcí na K. Myšlenku sledování vzdáleností od prostorů funkcí dále rozvíjíme v kapitolách 4 a 5, v nichž měříme vzdálenost od funkcí první Baireovy třídy nejprve v RK a posléze též v Banachových prostorech. 1 | cs_CZ |
dc.description.abstract | In this thesis we study quantitative weak compactness in spaces (C(K), τp) and later in Banach spaces. In the first chapter we introduce several quantities, which in different manners measure τp-noncompactness of a given uniformly bounded set H ⊂ RK . We apply the results in Banach spaces in chapter 2, where we prove (among others) a quantitative version of the Eberlein-Smulyan theorem. In the third chapter we focus on convex closures and how they affect measures of noncompactness. We prove a quantitative version of the Krein-Smulyan theorem. The first three chapters show that measuring noncompactness is intimately related to measuring distances from function spaces. We follow this idea in chapters 4 and 5, where we measure distances from Baire one functions first in RK and later also in Banach spaces. 1 | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | baireovská funkce | cs_CZ |
dc.subject | míry nekompaktnosti | cs_CZ |
dc.subject | konvexní obaly | cs_CZ |
dc.subject | Krejn-Šmuljanova věta | cs_CZ |
dc.subject | Baire function | en_US |
dc.subject | measures of noncompactness | en_US |
dc.subject | convex hull | en_US |
dc.subject | Krein-Smulyan theorem | en_US |
dc.title | Kvantitativní slabá kompaktnost | cs_CZ |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2012 | |
dcterms.dateAccepted | 2012-09-18 | |
dc.description.department | Department of Mathematical Analysis | en_US |
dc.description.department | Katedra matematické analýzy | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 72061 | |
dc.title.translated | Quantitative weak compactness | en_US |
dc.contributor.referee | Kalenda, Ondřej | |
dc.identifier.aleph | 001503895 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Mathematical Analysis | en_US |
thesis.degree.discipline | Matematická analýza | cs_CZ |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra matematické analýzy | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Mathematical Analysis | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Matematická analýza | cs_CZ |
uk.degree-discipline.en | Mathematical Analysis | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | V této práci se zabýváme kvantitativní slabou kompaktností v prostorech C(K) s topologií τp a posléze v prostorech Banachových. V úvodní kapitole zavedeme několik veličin, které různým způsobem vyjadřují míru τp-nekompaktnosti dané stejnoměrně ome- zené množiny H ⊂ RK . Poznatky pak aplikujeme v Banachových prostorech, v nichž se v kapitole 2 podaří dokázat mimo jiné kvantitativní verzi Eberlein-Šmuljanovy věty. Ve třetí kapitole zkoumáme, jak se mění míry nekompaktnosti při přechodu ke konvexním obalům. Dokážeme v ní například kvantitativní verzi Krejn-Šmuljanovy věty. V prvních třech kapitolách se ukáže, že míry nekompaktnosti přirozeně souvisí se vzdáleností dané f ∈ RK od spojitých funkcí na K. Myšlenku sledování vzdáleností od prostorů funkcí dále rozvíjíme v kapitolách 4 a 5, v nichž měříme vzdálenost od funkcí první Baireovy třídy nejprve v RK a posléze též v Banachových prostorech. 1 | cs_CZ |
uk.abstract.en | In this thesis we study quantitative weak compactness in spaces (C(K), τp) and later in Banach spaces. In the first chapter we introduce several quantities, which in different manners measure τp-noncompactness of a given uniformly bounded set H ⊂ RK . We apply the results in Banach spaces in chapter 2, where we prove (among others) a quantitative version of the Eberlein-Smulyan theorem. In the third chapter we focus on convex closures and how they affect measures of noncompactness. We prove a quantitative version of the Krein-Smulyan theorem. The first three chapters show that measuring noncompactness is intimately related to measuring distances from function spaces. We follow this idea in chapters 4 and 5, where we measure distances from Baire one functions first in RK and later also in Banach spaces. 1 | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzy | cs_CZ |
dc.identifier.lisID | 990015038950106986 | |