Zobrazit minimální záznam

Quantitative weak compactness
dc.contributor.advisorSpurný, Jiří
dc.creatorRolínek, Michal
dc.date.accessioned2017-05-06T17:20:33Z
dc.date.available2017-05-06T17:20:33Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/20.500.11956/39843
dc.description.abstractV této práci se zabýváme kvantitativní slabou kompaktností v prostorech C(K) s topologií τp a posléze v prostorech Banachových. V úvodní kapitole zavedeme několik veličin, které různým způsobem vyjadřují míru τp-nekompaktnosti dané stejnoměrně ome- zené množiny H ⊂ RK . Poznatky pak aplikujeme v Banachových prostorech, v nichž se v kapitole 2 podaří dokázat mimo jiné kvantitativní verzi Eberlein-Šmuljanovy věty. Ve třetí kapitole zkoumáme, jak se mění míry nekompaktnosti při přechodu ke konvexním obalům. Dokážeme v ní například kvantitativní verzi Krejn-Šmuljanovy věty. V prvních třech kapitolách se ukáže, že míry nekompaktnosti přirozeně souvisí se vzdáleností dané f ∈ RK od spojitých funkcí na K. Myšlenku sledování vzdáleností od prostorů funkcí dále rozvíjíme v kapitolách 4 a 5, v nichž měříme vzdálenost od funkcí první Baireovy třídy nejprve v RK a posléze též v Banachových prostorech. 1cs_CZ
dc.description.abstractIn this thesis we study quantitative weak compactness in spaces (C(K), τp) and later in Banach spaces. In the first chapter we introduce several quantities, which in different manners measure τp-noncompactness of a given uniformly bounded set H ⊂ RK . We apply the results in Banach spaces in chapter 2, where we prove (among others) a quantitative version of the Eberlein-Smulyan theorem. In the third chapter we focus on convex closures and how they affect measures of noncompactness. We prove a quantitative version of the Krein-Smulyan theorem. The first three chapters show that measuring noncompactness is intimately related to measuring distances from function spaces. We follow this idea in chapters 4 and 5, where we measure distances from Baire one functions first in RK and later also in Banach spaces. 1en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectbaireovská funkcecs_CZ
dc.subjectmíry nekompaktnostics_CZ
dc.subjectkonvexní obalycs_CZ
dc.subjectKrejn-Šmuljanova větacs_CZ
dc.subjectBaire functionen_US
dc.subjectmeasures of noncompactnessen_US
dc.subjectconvex hullen_US
dc.subjectKrein-Smulyan theoremen_US
dc.titleKvantitativní slabá kompaktnostcs_CZ
dc.typediplomová prácecs_CZ
dcterms.created2012
dcterms.dateAccepted2012-09-18
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId72061
dc.title.translatedQuantitative weak compactnessen_US
dc.contributor.refereeKalenda, Ondřej
dc.identifier.aleph001503895
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineMathematical Analysisen_US
thesis.degree.disciplineMatematická analýzacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra matematické analýzycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematical Analysisen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická analýzacs_CZ
uk.degree-discipline.enMathematical Analysisen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV této práci se zabýváme kvantitativní slabou kompaktností v prostorech C(K) s topologií τp a posléze v prostorech Banachových. V úvodní kapitole zavedeme několik veličin, které různým způsobem vyjadřují míru τp-nekompaktnosti dané stejnoměrně ome- zené množiny H ⊂ RK . Poznatky pak aplikujeme v Banachových prostorech, v nichž se v kapitole 2 podaří dokázat mimo jiné kvantitativní verzi Eberlein-Šmuljanovy věty. Ve třetí kapitole zkoumáme, jak se mění míry nekompaktnosti při přechodu ke konvexním obalům. Dokážeme v ní například kvantitativní verzi Krejn-Šmuljanovy věty. V prvních třech kapitolách se ukáže, že míry nekompaktnosti přirozeně souvisí se vzdáleností dané f ∈ RK od spojitých funkcí na K. Myšlenku sledování vzdáleností od prostorů funkcí dále rozvíjíme v kapitolách 4 a 5, v nichž měříme vzdálenost od funkcí první Baireovy třídy nejprve v RK a posléze též v Banachových prostorech. 1cs_CZ
uk.abstract.enIn this thesis we study quantitative weak compactness in spaces (C(K), τp) and later in Banach spaces. In the first chapter we introduce several quantities, which in different manners measure τp-noncompactness of a given uniformly bounded set H ⊂ RK . We apply the results in Banach spaces in chapter 2, where we prove (among others) a quantitative version of the Eberlein-Smulyan theorem. In the third chapter we focus on convex closures and how they affect measures of noncompactness. We prove a quantitative version of the Krein-Smulyan theorem. The first three chapters show that measuring noncompactness is intimately related to measuring distances from function spaces. We follow this idea in chapters 4 and 5, where we measure distances from Baire one functions first in RK and later also in Banach spaces. 1en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ
dc.identifier.lisID990015038950106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV