dc.contributor.advisor | Mrázová, Iveta | |
dc.creator | Jakubík, Miroslav | |
dc.date.accessioned | 2017-05-06T17:23:15Z | |
dc.date.available | 2017-05-06T17:23:15Z | |
dc.date.issued | 2012 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/39853 | |
dc.description.abstract | V tejto diplomovej práci som zrekapituloval viacero metód vhodných pre klastrovanie dát. Predstavil som dva dobré známe klastrovacie algoritmy, a to konkrétne K-means algoritmus a Fuzzy C-means (FCM) algoritmus. Uviedol som niekoľko metód vhodných pre odhad optimálneho počtu klastrov. Ďalej som predstavil základný model Kohonenových máp a dva modely Kohonenových máp s adaptívnou topológiou, konkrétne Kohonenové mapy s rastúcou mriežkou a model rastúcich neurónových plynov. Ako posledný som predstavil relatívne nový model radiálne bázických neurónových sieti. Pre tento typ neurónových sieti som uviedol viaceré učiace algoritmy RAN, RANKEF, MRAN, EMRAN a GAP. V závere práce som aplikoval jednotlivé klastrovacie metódy na reálne dáta popisujúce vzájomný obchod štátov sveta. | cs_CZ |
dc.description.abstract | In this master thesis I recapitulated several methods for data clustering. Two well known clustering algorithms, concretely K-means algorithm and Fuzzy C-means (FCM) algorithm, were described in the submitted work. I presented several methods, which could help estimate the optimal number of clusters. Further, I described Kohonen maps and two models of Kohonen's maps with dynamically changing structure, namely Kohonen map with growing grid and the model of growing neural gas. At last I described quite new model of radial basis function neural networks. I presented several learning algorithms for this model of neural networks, RAN, RANKEF, MRAN, EMRAN and GAP. In the end of this work I made some clustering experiments with real data. This data describes the international trade among states of the whole world. | en_US |
dc.language | Slovenčina | cs_CZ |
dc.language.iso | sk_SK | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | klastrovanie | cs_CZ |
dc.subject | K-means algoritmus | cs_CZ |
dc.subject | Fuzzy C-means klastrovanie | cs_CZ |
dc.subject | Kohonenové siete | cs_CZ |
dc.subject | radiálne bázické neurónové siete | cs_CZ |
dc.subject | clustering | en_US |
dc.subject | K-means algorithm | en_US |
dc.subject | Fuzzy C-means clustering | en_US |
dc.subject | Kohonen networks | en_US |
dc.subject | radial basis neural networks | en_US |
dc.title | RBF-sítě s dynamickou architekturou | sk_SK |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2012 | |
dcterms.dateAccepted | 2012-05-21 | |
dc.description.department | Department of Theoretical Computer Science and Mathematical Logic | en_US |
dc.description.department | Katedra teoretické informatiky a matematické logiky | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 122723 | |
dc.title.translated | RBF-networks with a dynamic architecture | en_US |
dc.title.translated | RBF-sítě s dynamickou architekturou | cs_CZ |
dc.contributor.referee | Kukačka, Marek | |
dc.identifier.aleph | 001467374 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Theoretical Computer Science | en_US |
thesis.degree.discipline | Teoretická informatika | cs_CZ |
thesis.degree.program | Computer Science | en_US |
thesis.degree.program | Informatika | cs_CZ |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra teoretické informatiky a matematické logiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Theoretical Computer Science and Mathematical Logic | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Teoretická informatika | cs_CZ |
uk.degree-discipline.en | Theoretical Computer Science | en_US |
uk.degree-program.cs | Informatika | cs_CZ |
uk.degree-program.en | Computer Science | en_US |
thesis.grade.cs | Dobře | cs_CZ |
thesis.grade.en | Good | en_US |
uk.abstract.cs | V tejto diplomovej práci som zrekapituloval viacero metód vhodných pre klastrovanie dát. Predstavil som dva dobré známe klastrovacie algoritmy, a to konkrétne K-means algoritmus a Fuzzy C-means (FCM) algoritmus. Uviedol som niekoľko metód vhodných pre odhad optimálneho počtu klastrov. Ďalej som predstavil základný model Kohonenových máp a dva modely Kohonenových máp s adaptívnou topológiou, konkrétne Kohonenové mapy s rastúcou mriežkou a model rastúcich neurónových plynov. Ako posledný som predstavil relatívne nový model radiálne bázických neurónových sieti. Pre tento typ neurónových sieti som uviedol viaceré učiace algoritmy RAN, RANKEF, MRAN, EMRAN a GAP. V závere práce som aplikoval jednotlivé klastrovacie metódy na reálne dáta popisujúce vzájomný obchod štátov sveta. | cs_CZ |
uk.abstract.en | In this master thesis I recapitulated several methods for data clustering. Two well known clustering algorithms, concretely K-means algorithm and Fuzzy C-means (FCM) algorithm, were described in the submitted work. I presented several methods, which could help estimate the optimal number of clusters. Further, I described Kohonen maps and two models of Kohonen's maps with dynamically changing structure, namely Kohonen map with growing grid and the model of growing neural gas. At last I described quite new model of radial basis function neural networks. I presented several learning algorithms for this model of neural networks, RAN, RANKEF, MRAN, EMRAN and GAP. In the end of this work I made some clustering experiments with real data. This data describes the international trade among states of the whole world. | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra teoretické informatiky a matematické logiky | cs_CZ |
dc.identifier.lisID | 990014673740106986 | |