Zobrazit minimální záznam

Random walk
Náhodná procházka
dc.contributor.advisorOmelka, Marek
dc.creatorBaňasová, Barbora
dc.date.accessioned2017-05-06T18:03:56Z
dc.date.available2017-05-06T18:03:56Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/20.500.11956/39998
dc.description.abstractNáhodná prechádzka je známy matematický model využívaný v rôznych vedeckých odvetviach. Cieľom tohto textu je vysvetliť a ukázať vzťah medzi základnými vlastnosťami jednoduchej náhodnej prechádzky. Práca zhŕňa viaceré teoretické poznatky o tejto matematickej štruktúre z pohľadu jej symetrickej i nesymetrickej verzie. Zaoberá sa odvodením absorpčných pravdepodobností, pravdepodobnosti prvého aj opakovaného návratu do nuly a klasifikáciou stavov jednoduchej náhodnej prechádzky. V záverečnej časti je náhodná prechádzka predstavená v širších súvislostiach ako martingal. Je ukázané za akých podmienok je náhodná prechádzka martingalom a akým spôsobom je možné túto všeobecnejšiu matematickú štruktúru aplikovať na model náhodnej prechádzky.cs_CZ
dc.description.abstractRandom walk is a well-known mathematical model used in various scientific fields. The aim of this thesis is to explain and to show the relation between the basic characteristics of simple random walk. The paper summarizes theoretical knowledge concerning this mathematical model in terms of its symmetrical or asymmetrical version. It deals with the derivation of absorbing probabilities, probability of the first and repeated return to origin and clasification of simple random walk states. The final part presents random walk in a wider perspective as a martingale. The conditions under which a random walk equals a martingale are established as well. It is also shown how it is possible to apply this more general mathematical structure on the model of random walk.en_US
dc.languageSlovenčinacs_CZ
dc.language.isosk_SK
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectnáhodná prechádzkacs_CZ
dc.subjecttrvalosťcs_CZ
dc.subjectabsorpčné pravdepodobnostics_CZ
dc.subjectmartingalcs_CZ
dc.subjectrandom walken_US
dc.subjectrecurrenceen_US
dc.subjectabsorbing probabilitiesen_US
dc.subjectmartingaleen_US
dc.titleNáhodná procházkask_SK
dc.typebakalářská prácecs_CZ
dcterms.created2012
dcterms.dateAccepted2012-06-21
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId113431
dc.title.translatedRandom walken_US
dc.title.translatedNáhodná procházkacs_CZ
dc.contributor.refereeDostál, Petr
dc.identifier.aleph001481013
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csNáhodná prechádzka je známy matematický model využívaný v rôznych vedeckých odvetviach. Cieľom tohto textu je vysvetliť a ukázať vzťah medzi základnými vlastnosťami jednoduchej náhodnej prechádzky. Práca zhŕňa viaceré teoretické poznatky o tejto matematickej štruktúre z pohľadu jej symetrickej i nesymetrickej verzie. Zaoberá sa odvodením absorpčných pravdepodobností, pravdepodobnosti prvého aj opakovaného návratu do nuly a klasifikáciou stavov jednoduchej náhodnej prechádzky. V záverečnej časti je náhodná prechádzka predstavená v širších súvislostiach ako martingal. Je ukázané za akých podmienok je náhodná prechádzka martingalom a akým spôsobom je možné túto všeobecnejšiu matematickú štruktúru aplikovať na model náhodnej prechádzky.cs_CZ
uk.abstract.enRandom walk is a well-known mathematical model used in various scientific fields. The aim of this thesis is to explain and to show the relation between the basic characteristics of simple random walk. The paper summarizes theoretical knowledge concerning this mathematical model in terms of its symmetrical or asymmetrical version. It deals with the derivation of absorbing probabilities, probability of the first and repeated return to origin and clasification of simple random walk states. The final part presents random walk in a wider perspective as a martingale. The conditions under which a random walk equals a martingale are established as well. It is also shown how it is possible to apply this more general mathematical structure on the model of random walk.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
dc.identifier.lisID990014810130106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV