Zobrazit minimální záznam

Fisherovo-Binghamovo rozdělení
dc.contributor.advisorHlávka, Zdeněk
dc.creatorMalá, Olivia Caroline
dc.date.accessioned2017-05-06T18:05:21Z
dc.date.available2017-05-06T18:05:21Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/20.500.11956/40004
dc.description.abstractTato práce je úvodem do směrové statistiky, podoboru statistiky, který se zabývá směrovými daty. Vzhledem ke speciální struktuře pravděpodobnostních prostorů, za něž bereme n-dimenzionální hyperkoule, musí být patřičně přizpůso- bena statistická teorie. Začneme na kružnici, kde zadefinujeme kružnicovou náhodnou veličinu (rovněž zvanou náhodný úhel) spolu s její charakterizací, a pokračujeme zkoumáním odhadů jejích parametrů. Poté výsledky zobecníme na n-dimenzionální případ. Následuje přehled Fisherovy-Binghamovy rodiny pravděpodobnostních rozdělení s detailnější prezentací von Misesova rozdělení jako zástupce této rodiny na kružnici. 1cs_CZ
dc.description.abstractThis thesis is an introduction into directional statistics, a subdiscipline of statistics that occupies itself with directional data. Because of the special structure of the sample spaces, which are n-dimensional hyperspheres, the statis- tical theory has to be adjusted. We start on the circle, where we define the circular random variable (also called random angle) together with its characterizations, and continue with studying estimators of its parameters. Subsequently, we generalize the results to the n- dimensional case. Further follows an overview of the Fisher-Bingham family of probability distributions with a more detailed presentation of the von Mises dis- tribution as a representative of the family on the circle. 1en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectsměrová statistikacs_CZ
dc.subjectnáhodný úhelcs_CZ
dc.subjectjednotkový náhodný vektorcs_CZ
dc.subjectFisherova-Binghamova rodina rozdělenícs_CZ
dc.subjectdirectional statisticsen_US
dc.subjectrandom angleen_US
dc.subjectunit random vectoren_US
dc.subjectFisher-Bingham family of distributionsen_US
dc.titleFisherovo-Binghamovo rozděleníen_US
dc.typebakalářská prácecs_CZ
dcterms.created2012
dcterms.dateAccepted2012-06-21
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId90708
dc.title.translatedFisherovo-Binghamovo rozdělenícs_CZ
dc.contributor.refereeHlubinka, Daniel
dc.identifier.aleph001481014
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csTato práce je úvodem do směrové statistiky, podoboru statistiky, který se zabývá směrovými daty. Vzhledem ke speciální struktuře pravděpodobnostních prostorů, za něž bereme n-dimenzionální hyperkoule, musí být patřičně přizpůso- bena statistická teorie. Začneme na kružnici, kde zadefinujeme kružnicovou náhodnou veličinu (rovněž zvanou náhodný úhel) spolu s její charakterizací, a pokračujeme zkoumáním odhadů jejích parametrů. Poté výsledky zobecníme na n-dimenzionální případ. Následuje přehled Fisherovy-Binghamovy rodiny pravděpodobnostních rozdělení s detailnější prezentací von Misesova rozdělení jako zástupce této rodiny na kružnici. 1cs_CZ
uk.abstract.enThis thesis is an introduction into directional statistics, a subdiscipline of statistics that occupies itself with directional data. Because of the special structure of the sample spaces, which are n-dimensional hyperspheres, the statis- tical theory has to be adjusted. We start on the circle, where we define the circular random variable (also called random angle) together with its characterizations, and continue with studying estimators of its parameters. Subsequently, we generalize the results to the n- dimensional case. Further follows an overview of the Fisher-Bingham family of probability distributions with a more detailed presentation of the von Mises dis- tribution as a representative of the family on the circle. 1en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
dc.identifier.lisID990014810140106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV