dc.contributor.advisor | Šír, Zbyněk | |
dc.creator | Mokriš, Dominik | |
dc.date.accessioned | 2017-05-06T18:59:09Z | |
dc.date.available | 2017-05-06T18:59:09Z | |
dc.date.issued | 2012 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/40184 | |
dc.description.abstract | Práce se věnuje problému hledání vhodného geometrického popisu oblasti pro metodu konečných prvků (MKP). Jsou předvedeny nejdůležitější metody používané pro tvorbu a zlepšování nestrukturovaných trojúhelníkových sítí (tri- angulace, mesh) pro MKP ve dvou dimensích. Jsou diskutována možná měřítka kvality sítě vzhledem k jejich použití pro lineární Lagrangeovy konečné prvky. Je zkoumán vztah mezi geometrií sítě (a zvláště úhly v jednotlivých trojúhelnících), diskretisační chybou a číslem podmíněnosti matice tuhosti. Dvě metody zlepšování sítí, založené na Těžištních Voronoiho dlážděních (CVT) a Optimálních Delau- nayho Triangulacích (ODT) jsou diskutovány podrobně a některé výsledky o kon- vergenci metod založených na CVT jsou revidovány. Některé aspekty těchto metod, například vztah mezi hustotou hraničních bodů, body uvnitř a prob- lematika hraničních trojúhelníků jsou uchopeny novým způsobem. Tyto dvě metody byly naimplementovány a diskutujeme jak možná vylepšení, tak návrhy nových algoritmů. Geometricky velmi zajímavá myšlenka nedávné alternativy k MKP, Isogeometrické Analýzy (IGA), je nastíněna a předvedena na jednoduchém příkladě. Bylo provedeno několik numerických... | cs_CZ |
dc.description.abstract | This thesis is devoted to the problem of finding a suitable geometrical de- scription of the domain for the Finite Element Method (FEM). We present the most important methods used in generation and improvement of unstructured triangular meshes (grids) for two dimensional FEM. Possible measures of mesh quality are discussed with respect to their usage in linear Lagrange FEM. The relationship between mesh geometry (especially angles of particular triangles), discretization error and stiffness matrix condition number is examined. Two methods of mesh improvement, based on Centroidal Voronoi Tessellations (CVT) and Optimal Delaunay Triangulations (ODT), are discussed in detail and some results on convergence of CVT based methods are reviewed. Some aspects of these methods, e.g. the relation between density of boundary points and interior mesh vertices and the treatment of the boundary triangles is reconsidered in a new way. We have implemented these two methods and we discuss possible im- provements and new algorithms. A geometrically very interesting idea of recent alternative to FEM, Isogeometric Analysis (IGA), is outlined and demonstrated on a simple example. Several numerical tests are made in order to the compare the accuracy of solutions of isotropic PDEs obtained by FEM on bad mesh, mesh improved... | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | Síť pro metodu konečných prvků | cs_CZ |
dc.subject | Isogeometrická analýza | cs_CZ |
dc.subject | těžištní Voronoiho dláždění | cs_CZ |
dc.subject | Optimální Delaunayho Triangulace | cs_CZ |
dc.subject | Finite Element Mesh | en_US |
dc.subject | Isogeometric analysis | en_US |
dc.subject | Centroidal Voronoi Tessellations | en_US |
dc.subject | Optimal Delaunay Triangulations | en_US |
dc.title | Generování a optimalizace meshů | en_US |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2012 | |
dcterms.dateAccepted | 2012-05-25 | |
dc.description.department | Mathematical Institute of Charles University | en_US |
dc.description.department | Matematický ústav UK | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 92410 | |
dc.title.translated | Generování a optimalizace meshů | cs_CZ |
dc.contributor.referee | Hron, Jaroslav | |
dc.identifier.aleph | 001468463 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Mathematical modelling in physics and technology | en_US |
thesis.degree.discipline | Matematické modelování ve fyzice a technice | cs_CZ |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Matematický ústav UK | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Mathematical Institute of Charles University | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Matematické modelování ve fyzice a technice | cs_CZ |
uk.degree-discipline.en | Mathematical modelling in physics and technology | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Velmi dobře | cs_CZ |
thesis.grade.en | Very good | en_US |
uk.abstract.cs | Práce se věnuje problému hledání vhodného geometrického popisu oblasti pro metodu konečných prvků (MKP). Jsou předvedeny nejdůležitější metody používané pro tvorbu a zlepšování nestrukturovaných trojúhelníkových sítí (tri- angulace, mesh) pro MKP ve dvou dimensích. Jsou diskutována možná měřítka kvality sítě vzhledem k jejich použití pro lineární Lagrangeovy konečné prvky. Je zkoumán vztah mezi geometrií sítě (a zvláště úhly v jednotlivých trojúhelnících), diskretisační chybou a číslem podmíněnosti matice tuhosti. Dvě metody zlepšování sítí, založené na Těžištních Voronoiho dlážděních (CVT) a Optimálních Delau- nayho Triangulacích (ODT) jsou diskutovány podrobně a některé výsledky o kon- vergenci metod založených na CVT jsou revidovány. Některé aspekty těchto metod, například vztah mezi hustotou hraničních bodů, body uvnitř a prob- lematika hraničních trojúhelníků jsou uchopeny novým způsobem. Tyto dvě metody byly naimplementovány a diskutujeme jak možná vylepšení, tak návrhy nových algoritmů. Geometricky velmi zajímavá myšlenka nedávné alternativy k MKP, Isogeometrické Analýzy (IGA), je nastíněna a předvedena na jednoduchém příkladě. Bylo provedeno několik numerických... | cs_CZ |
uk.abstract.en | This thesis is devoted to the problem of finding a suitable geometrical de- scription of the domain for the Finite Element Method (FEM). We present the most important methods used in generation and improvement of unstructured triangular meshes (grids) for two dimensional FEM. Possible measures of mesh quality are discussed with respect to their usage in linear Lagrange FEM. The relationship between mesh geometry (especially angles of particular triangles), discretization error and stiffness matrix condition number is examined. Two methods of mesh improvement, based on Centroidal Voronoi Tessellations (CVT) and Optimal Delaunay Triangulations (ODT), are discussed in detail and some results on convergence of CVT based methods are reviewed. Some aspects of these methods, e.g. the relation between density of boundary points and interior mesh vertices and the treatment of the boundary triangles is reconsidered in a new way. We have implemented these two methods and we discuss possible im- provements and new algorithms. A geometrically very interesting idea of recent alternative to FEM, Isogeometric Analysis (IGA), is outlined and demonstrated on a simple example. Several numerical tests are made in order to the compare the accuracy of solutions of isotropic PDEs obtained by FEM on bad mesh, mesh improved... | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Matematický ústav UK | cs_CZ |
dc.identifier.lisID | 990014684630106986 | |