Zobrazit minimální záznam

Long-term memory detection with bootstrapping techniques: empirical analysis
dc.contributor.advisorKrištoufek, Ladislav
dc.creatorAlbert, Branislav
dc.date.accessioned2017-05-06T19:18:00Z
dc.date.available2017-05-06T19:18:00Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/20.500.11956/40256
dc.description.abstractČasová rada má dlhú pamäť ak jej autokorelačná funkcia nie je absolútne konvergentná. Prítomnosť dlhej pamäte v časovej rade má dôležité následky pre konzistentnosť niekoľkých estimátorov z oblasti časových rad a pre predpovedanie. V tejto práci prezentujeme ucelený prehľad modelov časových rad nevyhnutných pre štúdium dlhej pamäte a následne sa zameriavame na množstvo parametrických a semiparametrických estimátorov dlhej pamäte. V Monte Carlo štúdii porovnávame pravdepodobnosť chyby prvého typu a silu štyroch estimátorov, menovite R/S, DFA, GPH a metóde založenej na Waveletoch, pre asymptoticky normálne rozdelenie estimátorov a rozdelenia získané pomocou metódy moving block bootstrap. Zisťujeme, že moving block bootstrap dokáže zlepšiť pravdepodobnosť chyby prvého typu u estimátora R/S. Vo všeobecnosti však moving block bootstrap neprináša uspokojivé výsledky. Estimátory GPH a Wavelet ponúkajú najspoľahlivejšie asymptotické intervaly spoľahlivosti.cs_CZ
dc.description.abstractA time series has long range dependence if its autocorrelation function is not absolutely convergent. Presence of long memory in a time series has important consequences for consistency of several time series estimators and forecasting. We present a self-contained theoretical treatment of time series models necessary for study of long range dependence and survey a large list of parametric and semiparametric estimators of long range dependence. In a Monte Carlo study, we compare size and power properties of four estimators, namely R/S, DFA, GPH and Wavelet based method, when relying on asymptotic normality of the estimators and distributions obtained from the moving block bootstrap. We find out that the moving block bootstrap can improve the size of the R/S estimator. In general however, the moving block bootstrap did not perform satisfactorily for other estimators. GPH and Wavelet estimators offer the most reliable asymptotic confidence intervals.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Fakulta sociálních vědcs_CZ
dc.subjectbootstrappingcs_CZ
dc.subjectmoving block bootstrapcs_CZ
dc.subjectdlhá pamäťcs_CZ
dc.subjectčasové radycs_CZ
dc.subjectRcs_CZ
dc.subjectbootstrappingen_US
dc.subjectmoving block bootstrapen_US
dc.subjectlong-term memoryen_US
dc.subjecttime seriesen_US
dc.subjectRen_US
dc.titleLong-term memory detection with bootstrapping techniques: empirical analysisen_US
dc.typebakalářská prácecs_CZ
dcterms.created2012
dcterms.dateAccepted2012-09-10
dc.description.departmentInstitute of Economic Studiesen_US
dc.description.departmentInstitut ekonomických studiícs_CZ
dc.description.facultyFaculty of Social Sciencesen_US
dc.description.facultyFakulta sociálních vědcs_CZ
dc.identifier.repId110729
dc.title.translatedLong-term memory detection with bootstrapping techniques: empirical analysiscs_CZ
dc.contributor.refereeAvdulaj, Krenar
dc.identifier.aleph001499812
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineEconomicsen_US
thesis.degree.disciplineEkonomiecs_CZ
thesis.degree.programEconomicsen_US
thesis.degree.programEkonomické teoriecs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csFakulta sociálních věd::Institut ekonomických studiícs_CZ
uk.taxonomy.organization-enFaculty of Social Sciences::Institute of Economic Studiesen_US
uk.faculty-name.csFakulta sociálních vědcs_CZ
uk.faculty-name.enFaculty of Social Sciencesen_US
uk.faculty-abbr.csFSVcs_CZ
uk.degree-discipline.csEkonomiecs_CZ
uk.degree-discipline.enEconomicsen_US
uk.degree-program.csEkonomické teoriecs_CZ
uk.degree-program.enEconomicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csČasová rada má dlhú pamäť ak jej autokorelačná funkcia nie je absolútne konvergentná. Prítomnosť dlhej pamäte v časovej rade má dôležité následky pre konzistentnosť niekoľkých estimátorov z oblasti časových rad a pre predpovedanie. V tejto práci prezentujeme ucelený prehľad modelov časových rad nevyhnutných pre štúdium dlhej pamäte a následne sa zameriavame na množstvo parametrických a semiparametrických estimátorov dlhej pamäte. V Monte Carlo štúdii porovnávame pravdepodobnosť chyby prvého typu a silu štyroch estimátorov, menovite R/S, DFA, GPH a metóde založenej na Waveletoch, pre asymptoticky normálne rozdelenie estimátorov a rozdelenia získané pomocou metódy moving block bootstrap. Zisťujeme, že moving block bootstrap dokáže zlepšiť pravdepodobnosť chyby prvého typu u estimátora R/S. Vo všeobecnosti však moving block bootstrap neprináša uspokojivé výsledky. Estimátory GPH a Wavelet ponúkajú najspoľahlivejšie asymptotické intervaly spoľahlivosti.cs_CZ
uk.abstract.enA time series has long range dependence if its autocorrelation function is not absolutely convergent. Presence of long memory in a time series has important consequences for consistency of several time series estimators and forecasting. We present a self-contained theoretical treatment of time series models necessary for study of long range dependence and survey a large list of parametric and semiparametric estimators of long range dependence. In a Monte Carlo study, we compare size and power properties of four estimators, namely R/S, DFA, GPH and Wavelet based method, when relying on asymptotic normality of the estimators and distributions obtained from the moving block bootstrap. We find out that the moving block bootstrap can improve the size of the R/S estimator. In general however, the moving block bootstrap did not perform satisfactorily for other estimators. GPH and Wavelet estimators offer the most reliable asymptotic confidence intervals.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Fakulta sociálních věd, Institut ekonomických studiícs_CZ
dc.identifier.lisID990014998120106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV