Zobrazit minimální záznam

Dense sets in products of topological spaces
dc.contributor.advisorSimon, Petr
dc.creatorBartoš, Adam
dc.date.accessioned2017-05-06T19:20:19Z
dc.date.available2017-05-06T19:20:19Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/20.500.11956/40265
dc.description.abstractPodmnožina součinu je tenká, pokud se každé její dva různé body liší alespoň ve dvou složkách. Podmnožina součinu je velmi tenká, pokud se každé její dva různé body liší ve všech složkách. Práce shrnuje základní vlastnosti tenkých a velmi tenkých hustých množin v součinech topologických prostorů. Podává postačující a nutné podmínky jejich existence a obsahuje několik příkladů. Hlavním výsledkem práce je konstrukce ukazující, že za hypotézy kontinua pro každé přirozené n ≥ 1 existuje spočetný T3 prostor X bez izolovaných bodů takový, že Xn obsahuje n-tenkou hustou množinu, ale Xm , n < m < 2n, nikoliv. Navíc, Xm , n < m < ω, neobsahuje (n + 1)-tenkou množinu. Slabší podoba věty je dokázána za Martinova axiomu.cs_CZ
dc.description.abstractA subset of a product space is thin if every two its distinct points are distinct in at least two coordinates. A subset of a product space is very thin if every two its distinct points are distinct in all coordinates. The thesis sum- marizes the basic properties of thin-type dense sets in products of topological spaces. Sufficient and necessary conditions of their existence are given and several examples are shown. The main result of the thesis is a construction showing that under the continuum hypothesis, for every natural n ≥ 1, there exists a countable T3 dense-in-itself space X such that Xn contains an n-thin dense subset, but Xm , n < m < 2n, doesn't. Besides, Xm , n < m < ω, does not contain any (n + 1)-thin dense subset. A weaker form of the theorem is proven under Martin's axiom.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjecthustá množinacs_CZ
dc.subjecttenká množinacs_CZ
dc.subjectvelmi tenká množinacs_CZ
dc.subjectdense seten_US
dc.subjectthin seten_US
dc.subjectvery thin seten_US
dc.titleHusté množiny v součinech topologických prostorůcs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2012
dcterms.dateAccepted2012-09-05
dc.description.departmentDepartment of Theoretical Computer Science and Mathematical Logicen_US
dc.description.departmentKatedra teoretické informatiky a matematické logikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId114959
dc.title.translatedDense sets in products of topological spacesen_US
dc.contributor.refereeHušek, Miroslav
dc.identifier.aleph001499118
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra teoretické informatiky a matematické logikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Theoretical Computer Science and Mathematical Logicen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csPodmnožina součinu je tenká, pokud se každé její dva různé body liší alespoň ve dvou složkách. Podmnožina součinu je velmi tenká, pokud se každé její dva různé body liší ve všech složkách. Práce shrnuje základní vlastnosti tenkých a velmi tenkých hustých množin v součinech topologických prostorů. Podává postačující a nutné podmínky jejich existence a obsahuje několik příkladů. Hlavním výsledkem práce je konstrukce ukazující, že za hypotézy kontinua pro každé přirozené n ≥ 1 existuje spočetný T3 prostor X bez izolovaných bodů takový, že Xn obsahuje n-tenkou hustou množinu, ale Xm , n < m < 2n, nikoliv. Navíc, Xm , n < m < ω, neobsahuje (n + 1)-tenkou množinu. Slabší podoba věty je dokázána za Martinova axiomu.cs_CZ
uk.abstract.enA subset of a product space is thin if every two its distinct points are distinct in at least two coordinates. A subset of a product space is very thin if every two its distinct points are distinct in all coordinates. The thesis sum- marizes the basic properties of thin-type dense sets in products of topological spaces. Sufficient and necessary conditions of their existence are given and several examples are shown. The main result of the thesis is a construction showing that under the continuum hypothesis, for every natural n ≥ 1, there exists a countable T3 dense-in-itself space X such that Xn contains an n-thin dense subset, but Xm , n < m < 2n, doesn't. Besides, Xm , n < m < ω, does not contain any (n + 1)-thin dense subset. A weaker form of the theorem is proven under Martin's axiom.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra teoretické informatiky a matematické logikycs_CZ
dc.identifier.lisID990014991180106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV