Kvaterniony a Möbiovy transformace v dimenzi 4
Quaternions and Möbius transformations in dimension 4
bakalářská práce (OBHÁJENO)
![Náhled dokumentu](/bitstream/handle/20.500.11956/40283/thumbnail.png?sequence=7&isAllowed=y)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/40283Identifikátory
SIS: 114211
Kolekce
- Kvalifikační práce [11266]
Autor
Vedoucí práce
Oponent práce
Krump, Lukáš
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Matematický ústav UK
Datum obhajoby
5. 9. 2012
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Velmi dobře
Klíčová slova (česky)
Kvaterniony, Möbiovy transformace, SO(3), SO(4)Klíčová slova (anglicky)
Quaternions, Möbius transformations, SO(3), SO(4)V této práci popisujeme transformace 3-rozměrného a 4-rozměrného Euklei- dovského prostoru. Nejprve ukážeme, jak lze pomocí kvaternionů v těchto dimen- zích elegantně popsat reflexe a rotace a dokážeme 2 strukturní věty o souvislosti grupy jednotkových kvaternionů a speciálních ortogonálních grup SO(3) a SO(4). Dále je vyložena část teorie konformních zobrazení, kterou později využíváme v popisu Möbiových transformací. Möbiovy transformace v dimenzi 4 definujeme jako zobrazení vzniklá složením sudého počtu sférických inverzí a reflexí. Ukáže- me, že je lze i v dimenzi 4 popsat jako lineární lomená zobrazení, podobně jako v dimenzi 2, pokud místo komplexních čísel užíváme kvaterniony. Naznačíme i klasifikaci Möbiových transformací na eliptické, loxodromické a parabolické a v dimenzi 4 popíšeme, jak jednotlivé třídy vypadají. 1
In this work we describe transformations of the 3-dimensional and the 4- dimensional Euclidean space. First we show how one can elegantly describe re- flections and rotations in these dimensions using quaternions and we prove 2 structural theorems concerning the connection between the group of unit qua- ternions and the special orthogonal groups SO(3) and SO(4). Next we recall a part of the conformal mapping theory, which we use later in the description of the Möbius transformations. We define the Möbius transformations in dimension 4 as compositions of an even number of spherical inversions and reflections. We show that one can describe them also in dimension 4 as linear fractional trans- formations in an analogous way as in dimension 2, if we use quaternions instead of complex numbers. We then outline a classification of Möbius transformations into elliptic, loxodromic and parabolic classes and in dimension 4, we describe what each class looks like. 1