dc.contributor.advisor | Pick, Luboš | |
dc.creator | Marian, Jakub | |
dc.date.accessioned | 2017-05-06T19:48:02Z | |
dc.date.available | 2017-05-06T19:48:02Z | |
dc.date.issued | 2012 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/40333 | |
dc.description.abstract | Práce zkoumá možnosti formalizace klasických pojmů matematické analýzy bez použití proměnných. Za tímto účelem vytváří nový matematický "jazyk", jenž je schopen popsat všechny klasické výpočty v matematické analýze (přesněji výpočty limit, konečných diferencí, jednorozměrných derivací a určitých a neurčitých inte- grálů) bez použití proměnných. Výpočty zapsané v tomto "jazyce" obsahují pouze symboly funkcí (a jsou tedy zcela rigorózní a nedávají prostor k vágnímu výkladu použitých symbolů). Obecně jsou také výrazně kratší a matematicky průhlednější než jejich tradiční verze (např. při výpočtech integrálů není potřeba zavádět žádné nové symboly a určitý integrál je formalizován tak, že všechna pravidla pro výpočet neurčitých integrálů (včetně "substitučních" pravidel) jsou přímo přenosná na pří- pad určitých integrálů. Práce také formalizuje Landauovu o-notaci způsobem, díky němuž je možné provádět s ní výpočty limit zcela rigorózním způsobem. 1 | cs_CZ |
dc.description.abstract | We explore the possibility of formalizing classical notions in calculus without using the notion of variable. We provide a new mathematical 'language' capable of performing all classical computations (namely computing limits, finite differences, one-dimensional derivatives, and indefinite and definite integrals) without any need to introduce a variable. Equations written using our notation contain only func- tion symbols (and as such are completely rigorous and don't leave any room for vague interpretations). They also tend to be much shorter and more mathemati- cally transparent than their traditional counterparts (for example, there is no need for introduction of new symbols in integration, and definite integration is formalized in such a way that all rules (including 'substitution' rules) for indefinite integration translate directly to definite integration). We also fully formalize the Landau little-o notation in a way that makes computation of limits using it fully rigorous. 1 | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | alternativní matematická notace | cs_CZ |
dc.subject | kalkulus | cs_CZ |
dc.subject | konečné diference | cs_CZ |
dc.subject | integrace | cs_CZ |
dc.subject | derivování | cs_CZ |
dc.subject | alternative mathematical notation | en_US |
dc.subject | calculus | en_US |
dc.subject | finite differences | en_US |
dc.subject | integration | en_US |
dc.subject | differentiation | en_US |
dc.title | Alternative mathematical notation and its applications in calculus | en_US |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2012 | |
dcterms.dateAccepted | 2012-06-21 | |
dc.description.department | Department of Mathematical Analysis | en_US |
dc.description.department | Katedra matematické analýzy | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 92342 | |
dc.title.translated | Alternativní matematická notace a její aplikace v kalkulu | cs_CZ |
dc.contributor.referee | Zahradník, Miloš | |
dc.identifier.aleph | 001481016 | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | General Mathematics | en_US |
thesis.degree.discipline | Obecná matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra matematické analýzy | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Mathematical Analysis | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná matematika | cs_CZ |
uk.degree-discipline.en | General Mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Práce zkoumá možnosti formalizace klasických pojmů matematické analýzy bez použití proměnných. Za tímto účelem vytváří nový matematický "jazyk", jenž je schopen popsat všechny klasické výpočty v matematické analýze (přesněji výpočty limit, konečných diferencí, jednorozměrných derivací a určitých a neurčitých inte- grálů) bez použití proměnných. Výpočty zapsané v tomto "jazyce" obsahují pouze symboly funkcí (a jsou tedy zcela rigorózní a nedávají prostor k vágnímu výkladu použitých symbolů). Obecně jsou také výrazně kratší a matematicky průhlednější než jejich tradiční verze (např. při výpočtech integrálů není potřeba zavádět žádné nové symboly a určitý integrál je formalizován tak, že všechna pravidla pro výpočet neurčitých integrálů (včetně "substitučních" pravidel) jsou přímo přenosná na pří- pad určitých integrálů. Práce také formalizuje Landauovu o-notaci způsobem, díky němuž je možné provádět s ní výpočty limit zcela rigorózním způsobem. 1 | cs_CZ |
uk.abstract.en | We explore the possibility of formalizing classical notions in calculus without using the notion of variable. We provide a new mathematical 'language' capable of performing all classical computations (namely computing limits, finite differences, one-dimensional derivatives, and indefinite and definite integrals) without any need to introduce a variable. Equations written using our notation contain only func- tion symbols (and as such are completely rigorous and don't leave any room for vague interpretations). They also tend to be much shorter and more mathemati- cally transparent than their traditional counterparts (for example, there is no need for introduction of new symbols in integration, and definite integration is formalized in such a way that all rules (including 'substitution' rules) for indefinite integration translate directly to definite integration). We also fully formalize the Landau little-o notation in a way that makes computation of limits using it fully rigorous. 1 | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzy | cs_CZ |
dc.identifier.lisID | 990014810160106986 | |