dc.contributor.advisor | Zvára, Karel | |
dc.creator | Vlčková, Katarína | |
dc.date.accessioned | 2017-05-06T20:04:29Z | |
dc.date.available | 2017-05-06T20:04:29Z | |
dc.date.issued | 2012 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/40388 | |
dc.description.abstract | In this paper, we describe various tests used to determine deviations from the Hardy-Weinberg equilibrium. The tests described are: the exact test, the χ2 test with and without continuity correction, the conditional χ2 test with and without continuity correction and the likelihood ratio test. These tests explore the question whether a random sample has trinomic distribution with probabilities pAA = θ2 , pAa = 2θ(1 − θ), paa = (1 − θ)2 . In this work, we simulate data of sample size 100 and we estimate the probability of type I error and the power of the tests. In this case, we get the best results with conditional χ2 test. The estimate of the power of the likelihood ratio test and the χ2 test is one of the highest of all. On the other hand, these two test are anticonservative in some cases . 1 | en_US |
dc.language | Slovenčina | cs_CZ |
dc.language.iso | sk_SK | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | Hardyho-Weinbergová rovnováha | cs_CZ |
dc.subject | multinomické rozdelenie | cs_CZ |
dc.subject | χ2 test | cs_CZ |
dc.subject | test pomerom vierohodnosti | cs_CZ |
dc.subject | exaktný test | cs_CZ |
dc.subject | Hardy-Weinberg equilibrium | en_US |
dc.subject | multinomic distribution | en_US |
dc.subject | χ2 test | en_US |
dc.subject | likelihood ratio test | en_US |
dc.subject | exact test | en_US |
dc.title | Hardyho-Weinbergova rovnováha | sk_SK |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2012 | |
dcterms.dateAccepted | 2012-06-21 | |
dc.description.department | Department of Probability and Mathematical Statistics | en_US |
dc.description.department | Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 63503 | |
dc.title.translated | Hardy-Weinberg equlibrium | en_US |
dc.title.translated | Hardyho-Weinbergova rovnováha | cs_CZ |
dc.contributor.referee | Kulich, Michal | |
dc.identifier.aleph | 001481020 | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | General Mathematics | en_US |
thesis.degree.discipline | Obecná matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Probability and Mathematical Statistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná matematika | cs_CZ |
uk.degree-discipline.en | General Mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Velmi dobře | cs_CZ |
thesis.grade.en | Very good | en_US |
uk.abstract.en | In this paper, we describe various tests used to determine deviations from the Hardy-Weinberg equilibrium. The tests described are: the exact test, the χ2 test with and without continuity correction, the conditional χ2 test with and without continuity correction and the likelihood ratio test. These tests explore the question whether a random sample has trinomic distribution with probabilities pAA = θ2 , pAa = 2θ(1 − θ), paa = (1 − θ)2 . In this work, we simulate data of sample size 100 and we estimate the probability of type I error and the power of the tests. In this case, we get the best results with conditional χ2 test. The estimate of the power of the likelihood ratio test and the χ2 test is one of the highest of all. On the other hand, these two test are anticonservative in some cases . 1 | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.identifier.lisID | 990014810200106986 | |