Zobrazit minimální záznam

Value at Risk: GARCH vs. modely stochastické volatility: empirická studie
dc.contributor.advisorGapko, Petr
dc.creatorTesárová, Viktória
dc.date.accessioned2017-05-06T21:37:13Z
dc.date.available2017-05-06T21:37:13Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/20.500.11956/40737
dc.description.abstractPráca porovnáva GARCH modely volatility a modely Stochastickej volatil- ity so študentovým t rozdelením a ich empirickú schopnos't predpovedania Value at Risk na piatich akciových indexoch: S&P, NASDAQ Compos- ite, CAC, DAX a FTSE. Detailne predstavuje problém vyrátania metódy maximálnej vierohodnosti pre Stochastickú volatilitu a navrhuje nedávno vyvinutú metódu tzv. Efficient Importance Sampling. Táto metóda posky- tuje veľmi primerané Monte Carlo odhady vierohodnostnej funkcie, ktoré sú závislé na numerických integráloch vysokéhu rádu. Komparatívna analýza je rozdelená na predpovedací výkon v prvom ob- dobí zo vzorky a v druhom období mimo vzorku. Tie sú vyhodnotené na základe štandardných štatistických a pravdepodobnostných backtestových metódach ako je tzv. podmienený a nepodmienený coverage. Na základe empirickej analýzy táto práca ukazuje, že SV modely môžu fungova't aspoň tak dobre ako GARCH modely, ak nie k nim by't nadradené pri predpovedaní volatility a následne parametrického Value at Risk. 1cs_CZ
dc.description.abstractThe thesis compares GARCH volatility models and Stochastic Volatility (SV) models with Student's t distributed errors and its empirical forecasting per- formance of Value at Risk on five stock price indices: S&P, NASDAQ Com- posite, CAC, DAX and FTSE. It introduces in details the problem of SV models Maximum Likelihood examinations and suggests the newly devel- oped approach of Efficient Importance Sampling (EIS). EIS is a procedure that provides an accurate Monte Carlo evaluation of likelihood function which depends upon high-dimensional numerical integrals. Comparison analysis is divided into in-sample and out-of-sample forecast- ing performance and evaluated using standard statistical probability back- testig methods as conditional and unconditional coverage. Based on empirical analysis thesis shows that SV models can perform at least as good as GARCH models if not superior in forecasting volatility and parametric VaR. 1en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Fakulta sociálních vědcs_CZ
dc.subjectVaRcs_CZ
dc.subjectGARCHcs_CZ
dc.subjectStochastická volatilitacs_CZ
dc.subjectbacktestové metódycs_CZ
dc.subjectpodmienený coveragecs_CZ
dc.subjectnepodmienený coveragecs_CZ
dc.subjectVaRen_US
dc.subjectGARCHen_US
dc.subjectStochastic Volatilityen_US
dc.subjectbacktesting methodsen_US
dc.subjectconditional coverageen_US
dc.subjectunconditional coverageen_US
dc.titleValue at Risk: GARCH vs. Stochastic Volatility Models: Empirical Studyen_US
dc.typediplomová prácecs_CZ
dcterms.created2012
dcterms.dateAccepted2012-09-13
dc.description.departmentInstitute of Economic Studiesen_US
dc.description.departmentInstitut ekonomických studiícs_CZ
dc.description.facultyFaculty of Social Sciencesen_US
dc.description.facultyFakulta sociálních vědcs_CZ
dc.identifier.repId111009
dc.title.translatedValue at Risk: GARCH vs. modely stochastické volatility: empirická studiecs_CZ
dc.contributor.refereeSeidler, Jakub
dc.identifier.aleph001501371
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineEconomicsen_US
thesis.degree.disciplineEkonomiecs_CZ
thesis.degree.programEconomicsen_US
thesis.degree.programEkonomické teoriecs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csFakulta sociálních věd::Institut ekonomických studiícs_CZ
uk.taxonomy.organization-enFaculty of Social Sciences::Institute of Economic Studiesen_US
uk.faculty-name.csFakulta sociálních vědcs_CZ
uk.faculty-name.enFaculty of Social Sciencesen_US
uk.faculty-abbr.csFSVcs_CZ
uk.degree-discipline.csEkonomiecs_CZ
uk.degree-discipline.enEconomicsen_US
uk.degree-program.csEkonomické teoriecs_CZ
uk.degree-program.enEconomicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csPráca porovnáva GARCH modely volatility a modely Stochastickej volatil- ity so študentovým t rozdelením a ich empirickú schopnos't predpovedania Value at Risk na piatich akciových indexoch: S&P, NASDAQ Compos- ite, CAC, DAX a FTSE. Detailne predstavuje problém vyrátania metódy maximálnej vierohodnosti pre Stochastickú volatilitu a navrhuje nedávno vyvinutú metódu tzv. Efficient Importance Sampling. Táto metóda posky- tuje veľmi primerané Monte Carlo odhady vierohodnostnej funkcie, ktoré sú závislé na numerických integráloch vysokéhu rádu. Komparatívna analýza je rozdelená na predpovedací výkon v prvom ob- dobí zo vzorky a v druhom období mimo vzorku. Tie sú vyhodnotené na základe štandardných štatistických a pravdepodobnostných backtestových metódach ako je tzv. podmienený a nepodmienený coverage. Na základe empirickej analýzy táto práca ukazuje, že SV modely môžu fungova't aspoň tak dobre ako GARCH modely, ak nie k nim by't nadradené pri predpovedaní volatility a následne parametrického Value at Risk. 1cs_CZ
uk.abstract.enThe thesis compares GARCH volatility models and Stochastic Volatility (SV) models with Student's t distributed errors and its empirical forecasting per- formance of Value at Risk on five stock price indices: S&P, NASDAQ Com- posite, CAC, DAX and FTSE. It introduces in details the problem of SV models Maximum Likelihood examinations and suggests the newly devel- oped approach of Efficient Importance Sampling (EIS). EIS is a procedure that provides an accurate Monte Carlo evaluation of likelihood function which depends upon high-dimensional numerical integrals. Comparison analysis is divided into in-sample and out-of-sample forecast- ing performance and evaluated using standard statistical probability back- testig methods as conditional and unconditional coverage. Based on empirical analysis thesis shows that SV models can perform at least as good as GARCH models if not superior in forecasting volatility and parametric VaR. 1en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Fakulta sociálních věd, Institut ekonomických studiícs_CZ
dc.identifier.lisID990015013710106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV