Zobrazit minimální záznam

Gröbner bases
dc.contributor.advisorŽemlička, Jan
dc.creatorPetržilková, Lenka
dc.date.accessioned2017-05-07T04:16:43Z
dc.date.available2017-05-07T04:16:43Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/20.500.11956/42067
dc.description.abstractV této práci si nejprve připomeneme základní Buchbergerův algoritmus pro výpočet Gröbnerovy báze nad komutativními polynomiálními okruhy. Zabýváme se také jednoznačností Gröbnerovy báze pro daný ideál. Dále zkoumáme méně známý, ale pro některé případy efektivnější Faugèreův F4 algoritmus. V závěru první kapitoly tyto dva algoritmy porovnáme. V druhé kapitole rozebereme zobecnění Buchbergerova algoritmu pro nekomutativní okruhy a to jak pro volné tak pro faktorové algebry. Na rozdíl od komu- tativního případu zde mohou mít i konečně generované ideály nekonečné Gröbnerovy báze. Mimo jiné zde zkoumáme tzv. kvazi-nuly, tj. prvky, ze kte- rých přenásobením libovolným termem vznikne nula, a jejich roli při redukci polynomu množinou. 1cs_CZ
dc.description.abstractIn this thesis we remind you of the basic Buchberger algorithm for com- puting the Gröbner base over commutative polynomial rings. We also observe uniqueness of the Gröbner base for the ideal. Next we research less known, but more effective (for some instances) Faugère F4 algorithm. At the end of the first chapter we compare these two algorithms. In the second chapter we analyze a generalization of the Buchberger algorithm for noncommutative rings both for free algebra and factor algebra. On the contary to the commu- tative case, Gröbner bases can be infinite in this case, even for some finitely generated ideals. Among other things, we investigate quasi-zero elements,i.e. such elements, that we get zero by multiplying them with an arbitrary term, and their role in the division of a polynom by set of polynoms. 1en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectGröbnerova bázecs_CZ
dc.subjectBuchbergeruv algoritmuscs_CZ
dc.subjectFaugèreuv algoritmus F4cs_CZ
dc.subjectnekomutativní Gröbnerovy bázecs_CZ
dc.subjectGröbne baseen_US
dc.subjectBuchberger algorithmen_US
dc.subjectFaugère algorithm F4en_US
dc.subjectnoncommutative Gröbner basesen_US
dc.titleGröbnerovy bázecs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2012
dcterms.dateAccepted2012-09-11
dc.description.departmentDepartment of Algebraen_US
dc.description.departmentKatedra algebrycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId117405
dc.title.translatedGröbner basesen_US
dc.contributor.refereeRůžička, Pavel
dc.identifier.aleph001500354
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineMathematical Methods of Information Securityen_US
thesis.degree.disciplineMatematické metody informační bezpečnostics_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra algebrycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Algebraen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematické metody informační bezpečnostics_CZ
uk.degree-discipline.enMathematical Methods of Information Securityen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csDobřecs_CZ
thesis.grade.enGooden_US
uk.abstract.csV této práci si nejprve připomeneme základní Buchbergerův algoritmus pro výpočet Gröbnerovy báze nad komutativními polynomiálními okruhy. Zabýváme se také jednoznačností Gröbnerovy báze pro daný ideál. Dále zkoumáme méně známý, ale pro některé případy efektivnější Faugèreův F4 algoritmus. V závěru první kapitoly tyto dva algoritmy porovnáme. V druhé kapitole rozebereme zobecnění Buchbergerova algoritmu pro nekomutativní okruhy a to jak pro volné tak pro faktorové algebry. Na rozdíl od komu- tativního případu zde mohou mít i konečně generované ideály nekonečné Gröbnerovy báze. Mimo jiné zde zkoumáme tzv. kvazi-nuly, tj. prvky, ze kte- rých přenásobením libovolným termem vznikne nula, a jejich roli při redukci polynomu množinou. 1cs_CZ
uk.abstract.enIn this thesis we remind you of the basic Buchberger algorithm for com- puting the Gröbner base over commutative polynomial rings. We also observe uniqueness of the Gröbner base for the ideal. Next we research less known, but more effective (for some instances) Faugère F4 algorithm. At the end of the first chapter we compare these two algorithms. In the second chapter we analyze a generalization of the Buchberger algorithm for noncommutative rings both for free algebra and factor algebra. On the contary to the commu- tative case, Gröbner bases can be infinite in this case, even for some finitely generated ideals. Among other things, we investigate quasi-zero elements,i.e. such elements, that we get zero by multiplying them with an arbitrary term, and their role in the division of a polynom by set of polynoms. 1en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra algebrycs_CZ
dc.identifier.lisID990015003540106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV