Interest rates models in continous time
Modely úrokových měr ve spojitém čase
diploma thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/4465Identifiers
Study Information System: 42155
Collections
- Kvalifikační práce [11216]
Author
Advisor
Referee
Dostál, Petr
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Probability, mathematical statistics and econometrics
Department
Department of Probability and Mathematical Statistics
Date of defense
16. 5. 2006
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Excellent
The core of this work is to introduce the probabilistic techniques used in widely applied financial models and to formulate the term structure of interest rates using the continuous-time no-arbitrage framework. Stochastic processes in this work are mean-reverting, because over the long time horizon, interest rates have the tendency to revert to their average long-term levels. All the short rate models explained are Ito processes based on the Brownian motion, which onebyone define the parameters to best represent the real behavior of interest rates in continuous time. Examples and graphs are provided for illustration of the key results.