Zobrazit minimální záznam

Strong stationary times and convergence of Markov chains
dc.contributor.advisorProkešová, Michaela
dc.creatorSuk, Luboš
dc.date.accessioned2017-05-07T19:46:05Z
dc.date.available2017-05-07T19:46:05Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/20.500.11956/46005
dc.description.abstractV této práci si ukážeme, jak se dá odhadovat rychlost konvergence markovských řetězců k jejich stacionárnímu rozdělení. Budeme k tomu používat metodu využívající silně stacionárních časů. Zaměříme se pouze na nerozložitelné a aperiodické řetězce, u kterých máme zaručenou existenci právě jednoho sta- cionárního rozdělení. Zavedeme si čas mixingu markovského řetězce neboli čas potřebný k tomu, aby marginální rozdělení řetězce bylo dostatečně blízko stacionárnímu. K měření vzdálenosti mezi rozděleními budeme v této práci používat vzdálenost v totální variaci. Hlavním cílem práce bude pro vybrané řetězce zkonstruovat vhodný silně stacionární čas a ten pak použít k nalezení horního odhadu času mixingu.cs_CZ
dc.description.abstractIn this thesis we study the estimation of speed of convergence of Markov chains to their stacionary distributions. For that purpose we will use the method of strong stationary times. We focus on irreducible and aperiodic chains only since in that case the existence of exactly one stationary distribution is guaranteed. We introduce the mixing time for a Markov chain as the time needed for the marginal distribution of the chain to be sufficiently close to the stationary dis- tribution. The distance between two distributions is measured by the total variation distance. The main goal of this thesis is to construct an appropriate strong stationary time for selected chains and then use it for obtaining an upper bound for the mixing time.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectmarkovský řetězeccs_CZ
dc.subjectvzdálenost v totální variacics_CZ
dc.subjectsilně stacionární čascs_CZ
dc.subjectčas mixingucs_CZ
dc.subjectmarkov chainen_US
dc.subjecttotal variation distanceen_US
dc.subjectstrong stationary timeen_US
dc.subjectmixing timeen_US
dc.titleSilně stacionární časy a konvergence Markovských řetězcůcs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2012
dcterms.dateAccepted2012-06-19
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId91202
dc.title.translatedStrong stationary times and convergence of Markov chainsen_US
dc.contributor.refereeKříž, Pavel
dc.identifier.aleph001480259
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV této práci si ukážeme, jak se dá odhadovat rychlost konvergence markovských řetězců k jejich stacionárnímu rozdělení. Budeme k tomu používat metodu využívající silně stacionárních časů. Zaměříme se pouze na nerozložitelné a aperiodické řetězce, u kterých máme zaručenou existenci právě jednoho sta- cionárního rozdělení. Zavedeme si čas mixingu markovského řetězce neboli čas potřebný k tomu, aby marginální rozdělení řetězce bylo dostatečně blízko stacionárnímu. K měření vzdálenosti mezi rozděleními budeme v této práci používat vzdálenost v totální variaci. Hlavním cílem práce bude pro vybrané řetězce zkonstruovat vhodný silně stacionární čas a ten pak použít k nalezení horního odhadu času mixingu.cs_CZ
uk.abstract.enIn this thesis we study the estimation of speed of convergence of Markov chains to their stacionary distributions. For that purpose we will use the method of strong stationary times. We focus on irreducible and aperiodic chains only since in that case the existence of exactly one stationary distribution is guaranteed. We introduce the mixing time for a Markov chain as the time needed for the marginal distribution of the chain to be sufficiently close to the stationary dis- tribution. The distance between two distributions is measured by the total variation distance. The main goal of this thesis is to construct an appropriate strong stationary time for selected chains and then use it for obtaining an upper bound for the mixing time.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
dc.identifier.lisID990014802590106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV