dc.contributor.advisor | Dostál, Petr | |
dc.creator | Křepinská, Dana | |
dc.date.accessioned | 2017-05-07T19:46:18Z | |
dc.date.available | 2017-05-07T19:46:18Z | |
dc.date.issued | 2012 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/46006 | |
dc.description.abstract | Tato bakalářská práce se zabývá Radon-Nikodymovou derivací, jejími vlast- nostmi, souvislostí s derivací míry a následně jejím využitím v teorii pravděpodob- nosti. Je zde podrobně definované podmíněné pravděpodobnostní rozdělení a vyřešena otázka jednoznačnosti při spojitém podmiňování jevem nulové prav- děpodobnosti. Dále je v textu pomocí podmíněného rozdělení definována pod- míněná střední hodnota a dokázané některé její vlastnosti. Práce se také zmiňuje o borelovsky izomorfních prostorech a okrajově o podmíněném rozptylu a ko- varianci. Závěr práce je věnován aplikaci podmiňování při konstrukci Brownova mostu z Wienerova procesu a následnému využití Brownova mostu ve statistice. | cs_CZ |
dc.description.abstract | This thesis concerns the Radon-Nikodym derivate, its properties, connection with measure derivative and its applications in the probability theory. The text defines the conditional probability distribution and solves the problem of unique- ness in the case of conditioning of an event which has zero probability of occuring. Next part of the text is about the conditional expactation, which is defined by the conditional distribution, and some of its properties. There are also few words about the Borel isomorphic spaces and the conditional variability and covariance. Last section of this work is about construction of the Brownian Bridge from the Wiener process and about its applications is the statistics. | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | Radon-Nikodymova derivace | cs_CZ |
dc.subject | podmíněné pravděpodobnostní rozdělení | cs_CZ |
dc.subject | Brownův most | cs_CZ |
dc.subject | the Radon-Nikodym derivate | en_US |
dc.subject | the conditional probability distribution | en_US |
dc.subject | the Brownian bridge | en_US |
dc.title | Radon-Nikodymova derivace v pravděpodobnosti | cs_CZ |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2012 | |
dcterms.dateAccepted | 2012-06-19 | |
dc.description.department | Department of Probability and Mathematical Statistics | en_US |
dc.description.department | Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 114083 | |
dc.title.translated | Radon-Nikodym Derivative in Probability Theory | en_US |
dc.contributor.referee | Janák, Josef | |
dc.identifier.aleph | 001480260 | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | General Mathematics | en_US |
thesis.degree.discipline | Obecná matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Probability and Mathematical Statistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná matematika | cs_CZ |
uk.degree-discipline.en | General Mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Tato bakalářská práce se zabývá Radon-Nikodymovou derivací, jejími vlast- nostmi, souvislostí s derivací míry a následně jejím využitím v teorii pravděpodob- nosti. Je zde podrobně definované podmíněné pravděpodobnostní rozdělení a vyřešena otázka jednoznačnosti při spojitém podmiňování jevem nulové prav- děpodobnosti. Dále je v textu pomocí podmíněného rozdělení definována pod- míněná střední hodnota a dokázané některé její vlastnosti. Práce se také zmiňuje o borelovsky izomorfních prostorech a okrajově o podmíněném rozptylu a ko- varianci. Závěr práce je věnován aplikaci podmiňování při konstrukci Brownova mostu z Wienerova procesu a následnému využití Brownova mostu ve statistice. | cs_CZ |
uk.abstract.en | This thesis concerns the Radon-Nikodym derivate, its properties, connection with measure derivative and its applications in the probability theory. The text defines the conditional probability distribution and solves the problem of unique- ness in the case of conditioning of an event which has zero probability of occuring. Next part of the text is about the conditional expactation, which is defined by the conditional distribution, and some of its properties. There are also few words about the Borel isomorphic spaces and the conditional variability and covariance. Last section of this work is about construction of the Brownian Bridge from the Wiener process and about its applications is the statistics. | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.identifier.lisID | 990014802600106986 | |