Konvexně nezávislé podmnožiny konečných množin bodů
Konvexně nezávislé podmnožiny konečných množin bodů
diplomová práce (OBHÁJENO)

Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/48917Identifikátory
SIS: 96279
Kolekce
- Kvalifikační práce [11267]
Autor
Vedoucí práce
Oponent práce
Cibulka, Josef
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Diskrétní modely a algoritmy
Katedra / ústav / klinika
Katedra aplikované matematiky
Datum obhajoby
19. 9. 2011
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Výborně
Klíčová slova (česky)
množiny bodů, konvexní poloha, Erdös-Szekeresova větaKlíčová slova (anglicky)
point sets, convex position, Erdös-Szekeres theoremNech' fd(n), pro n > d ≥ 2, je nejmenší přirozené číslo takové, že každá množina fd(n) bod· v obecné poloze v Rd obsahuje n bod· v konvexní poloze. Nech' hd(n, k), pro n > d ≥ 2 a k ≥ 0, je nejmenší přirozené číslo takové, že v každé množině hd(n, k) bod· v obecné poloze v Rd existuje n bod· v konvexní poloze, uvnitř jejichž konvexního obalu je nejvýše k dalších bod·. Valtr ukázal, že h4(n, 0) neexistuje pro žádné n ≥ 249. V této práce předvedeme, že h4(n, 0) neexistuje pro žádné n ≥ 137. Ukážeme, že h3(8, k) ≤ f3(8) pro všechna k ≥ 26, h4(10, k) ≤ f4(10) pro všechna k ≥ 147 a h5(12, k) ≤ f5(12) pro všechna k ≥ 999. Dále nech' fd(k, n) je nejmenší číslo takové, že v každé množině fd(k, n) bod· v obecné poloze v Rd existuje n bod· jejichž konvexní obal má alespoň k vrchol·. Ukážeme, že pro n ≥ k ≥ d + 1, d ≥ 2, fd(k, n) ≥ (n − 1) (k − 1)/(cd logd−2 (n − 1)) , kde cd je konstanta závislá pouze na d.
Let fd(n), n > d ≥ 2, be the smallest positive integer such that any set of fd(n) points, in general position in Rd , contains n points in convex position. Let hd(n, k), n > d ≥ 2 and k ≥ 0, denote the smallest number with the property that in any set of hd(n, k) points, in general position in Rd , there are n points in convex position whose convex hull contains at most k other points. Previous result of Valtr states that h4(n, 0) does not exist for all n ≥ 249. We show that h4(n, 0) does not exist for all n ≥ 137. We show that h3(8, k) ≤ f3(8) for all k ≥ 26, h4(10, k) ≤ f4(10) for all k ≥ 147 and h5(12, k) ≤ f5(12) for all k ≥ 999. Next, let fd(k, n) be the smallest number such that in every set of fd(k, n) points, in general position in Rd , there are n points whose convex hull has at least k vertices. We show that, for arbitrary integers n ≥ k ≥ d + 1, d ≥ 2, fd(k, n) ≥ (n − 1) (k − 1)/(cd logd−2 (n − 1)) , where cd > 0 is a constant dependent only on the dimension d. 1