dc.contributor.advisor | Holeňa, Martin | |
dc.creator | Klíma, Jan | |
dc.date.accessioned | 2017-05-08T12:16:57Z | |
dc.date.available | 2017-05-08T12:16:57Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/49201 | |
dc.description.abstract | Evoluční algoritmy jsou jednou z nejúspěšnějších metod pro řešení netradičních optimalizačních problémů. Protože evoluční algoritmy používají pouze funkční hodnoty cílové funkce, blíží s k jejímu optimu mnohem pomaleji než optimalizační metody pro hladké funkce. Tato vlastnost evolučních algoritmů je zvláště nevýhodná v kontextu nákladného a časově náročného empirického způsobu získávání hodnot cílové funkce. Evoluční algoritmy však lze podstatně urychlit použitím dostatečně přesného regresního modelu cílové funkce. Cílem práce je výzkum využitelnosti regresních stromů a regresních lesů jako náhradního modelu k urychlení evoluční optimalizace empirických cílových funkcí. | cs_CZ |
dc.description.abstract | Evolutionary algorithms are one of the most successful methods for solving non-traditional optimization problems. As they employ only function values of the objective function, evolutionary algorithms converge much more slowly than optimization methods for smooth functions. This property of evolutionary algorithms is particularly disadvantageous in the context of costly and time-consuming empirical way of obtaining values of the objective function. However, evolutionary algorithms can be substantially speeded up by employing a sufficiently accurate regression model of the empirical objective function. This thesis provides a survey of utilizability of regression trees and their ensembles as a surrogate model to accelerate convergence of evolutionary optimization. | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | evoluční optimalizace | cs_CZ |
dc.subject | regresní stromy | cs_CZ |
dc.subject | regresní lesy | cs_CZ |
dc.subject | náhradní modelování | cs_CZ |
dc.subject | evolutionary optimization | en_US |
dc.subject | regression trees | en_US |
dc.subject | tree ensembles | en_US |
dc.subject | surrogate modelling | en_US |
dc.title | Urychlení evolučních algoritmů pomocí rozhodovacích stromů a jejich zobecnění | cs_CZ |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2011 | |
dcterms.dateAccepted | 2011-09-05 | |
dc.description.department | Department of Theoretical Computer Science and Mathematical Logic | en_US |
dc.description.department | Katedra teoretické informatiky a matematické logiky | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 76761 | |
dc.title.translated | Accelerating evolutionary algorithms by decision trees and their generalizations | en_US |
dc.contributor.referee | Hauzar, David | |
dc.identifier.aleph | 001384084 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Theoretical Computer Science | en_US |
thesis.degree.discipline | Teoretická informatika | cs_CZ |
thesis.degree.program | Computer Science | en_US |
thesis.degree.program | Informatika | cs_CZ |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra teoretické informatiky a matematické logiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Theoretical Computer Science and Mathematical Logic | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Teoretická informatika | cs_CZ |
uk.degree-discipline.en | Theoretical Computer Science | en_US |
uk.degree-program.cs | Informatika | cs_CZ |
uk.degree-program.en | Computer Science | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Evoluční algoritmy jsou jednou z nejúspěšnějších metod pro řešení netradičních optimalizačních problémů. Protože evoluční algoritmy používají pouze funkční hodnoty cílové funkce, blíží s k jejímu optimu mnohem pomaleji než optimalizační metody pro hladké funkce. Tato vlastnost evolučních algoritmů je zvláště nevýhodná v kontextu nákladného a časově náročného empirického způsobu získávání hodnot cílové funkce. Evoluční algoritmy však lze podstatně urychlit použitím dostatečně přesného regresního modelu cílové funkce. Cílem práce je výzkum využitelnosti regresních stromů a regresních lesů jako náhradního modelu k urychlení evoluční optimalizace empirických cílových funkcí. | cs_CZ |
uk.abstract.en | Evolutionary algorithms are one of the most successful methods for solving non-traditional optimization problems. As they employ only function values of the objective function, evolutionary algorithms converge much more slowly than optimization methods for smooth functions. This property of evolutionary algorithms is particularly disadvantageous in the context of costly and time-consuming empirical way of obtaining values of the objective function. However, evolutionary algorithms can be substantially speeded up by employing a sufficiently accurate regression model of the empirical objective function. This thesis provides a survey of utilizability of regression trees and their ensembles as a surrogate model to accelerate convergence of evolutionary optimization. | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra teoretické informatiky a matematické logiky | cs_CZ |
dc.identifier.lisID | 990013840840106986 | |