Zobrazit minimální záznam

Nerovnosti pro integrální operátory
dc.contributor.advisorPick, Luboš
dc.creatorHolík, Miloslav
dc.date.accessioned2017-05-08T12:19:01Z
dc.date.available2017-05-08T12:19:01Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/20.500.11956/49211
dc.description.abstractPředložená práce obsahuje shrnutí dosud známých výsledků o operá- torových nerovnostech typu " good λ", " better good λ" a " rearranged good λ" na prostorech funkcí nad Eukleidovským prostorem s Lebesgueovou mírou a jejich důsledky, v podobě složitějších operátorových nerovností a normových odhadů na Lebesguevých prostorech. Hlavním cílem práce ovšem je vybu- dovat podobnou teorii pro operátor Rieszova potenciálu na prostorech funkcí nad kvazi-metrickým prostorem s takzvanou " zdvojovací" mírou. Kombinací důsledků této teorie s již známými normovými odhady dostáváme omezenost operátoru Rieszova potenciálu na Lebesguesových a Lorentzových prostorech.cs_CZ
dc.description.abstractThe presented work contains a survey of the so far known results about the operator inequalities of the type "good λ", "better good λ" and "rearranged good λ" on the function spaces over the Euclidean space with the Lebesgue measure and their corollaries in the form of more complex operator inequal- ities and norm estimates. However, the main aim is to build similar theory for the Riesz potential operator on the function spaces over the quasi-metric space with the so-called "doubling" measure. Combining the corollaries of this theory with the known norm estimates we obtain the boundedness for the Riesz potential operator on the Lebesgue and Lorentz spaces.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectgood lambda nerovnostcs_CZ
dc.subjectbetter good lambda nerovnostcs_CZ
dc.subjectLebesgueův prostorcs_CZ
dc.subjectLorentzůuv prostorcs_CZ
dc.subjectRieszův potenciálcs_CZ
dc.subjectfrakční maximální operátorcs_CZ
dc.subjectgood lambda inequalityen_US
dc.subjectbetter good lambda inequalityen_US
dc.subjectLebesgue spaceen_US
dc.subjectLorentz spaceen_US
dc.subjectRiesz potentialen_US
dc.subjectfractional maximal operatoren_US
dc.titleNerovnosti pro integrální operátoryen_US
dc.typediplomová prácecs_CZ
dcterms.created2011
dcterms.dateAccepted2011-09-08
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId79145
dc.title.translatedNerovnosti pro integrální operátorycs_CZ
dc.contributor.refereeHencl, Stanislav
dc.identifier.aleph001384893
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineMathematical Analysisen_US
thesis.degree.disciplineMatematická analýzacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra matematické analýzycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematical Analysisen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická analýzacs_CZ
uk.degree-discipline.enMathematical Analysisen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csPředložená práce obsahuje shrnutí dosud známých výsledků o operá- torových nerovnostech typu " good λ", " better good λ" a " rearranged good λ" na prostorech funkcí nad Eukleidovským prostorem s Lebesgueovou mírou a jejich důsledky, v podobě složitějších operátorových nerovností a normových odhadů na Lebesguevých prostorech. Hlavním cílem práce ovšem je vybu- dovat podobnou teorii pro operátor Rieszova potenciálu na prostorech funkcí nad kvazi-metrickým prostorem s takzvanou " zdvojovací" mírou. Kombinací důsledků této teorie s již známými normovými odhady dostáváme omezenost operátoru Rieszova potenciálu na Lebesguesových a Lorentzových prostorech.cs_CZ
uk.abstract.enThe presented work contains a survey of the so far known results about the operator inequalities of the type "good λ", "better good λ" and "rearranged good λ" on the function spaces over the Euclidean space with the Lebesgue measure and their corollaries in the form of more complex operator inequal- ities and norm estimates. However, the main aim is to build similar theory for the Riesz potential operator on the function spaces over the quasi-metric space with the so-called "doubling" measure. Combining the corollaries of this theory with the known norm estimates we obtain the boundedness for the Riesz potential operator on the Lebesgue and Lorentz spaces.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ
dc.identifier.lisID990013848930106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV