dc.contributor.advisor | Pick, Luboš | |
dc.creator | Oľhava, Rastislav | |
dc.date.accessioned | 2017-05-08T13:11:47Z | |
dc.date.available | 2017-05-08T13:11:47Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/49430 | |
dc.description.abstract | Názov práce: Optimálne páry priestorov funkcií pre váhove Hardyho operátory Autor: Rastislav Ol'hava Katedra: Katedra matematické analýzy Vedúci diplomovej práce: Prof. RNDr. Luboš Pick, CSc., DSc., Katedra matem- atické analýzy, Matematicko-fyzikální fakulta, Univerzita Karlova, Sokolovská 83, 186 75 Praha 8, Česká Republika Abstrakt: Zameriame sa na určitý váhový Hardyho operátor so spojitou kvazikonkáv- nou váhou, definovaný na Banachových priestoroch funkcií, v ktorých má každá funkcia rovnakú normu ako jej prerovnanie. V teórii priestorov funkcií majú tieto operátory široké využitie. V predchádzajúcom výskume bolo dokázané, že platí ekvivalencia medzi ohraničenost'ou niektorých z týchto operátorov a sobolevovskými vnoreniami. Nech je náš Hardyho operátor ohraničený z priestoru X do priestoru Y . Táto práca sa venuje hl'adaniu takej dvojice priestorov X a Y , ktorá je optimálna. Zmienená optimalita by pri d'alšom výzkume mala viest' k optimalite v určitých sobolevovských vnoreniach. Našim druhým ciel'om je štúdium supremálnych operátorov, ktoré tiež úzko súvisia s touto tématikou, a odvodenie niektorých ich základných vlastností. Kl'účové slová: optimalita, váhový operátor Hardyovho typu, supremálny operátor | cs_CZ |
dc.description.abstract | Title: Optimal pairs of function spaces for weighted Hardy operators Author: Rastislav Ol'hava Department: Department of Mathematical Analysis Supervisor of the master thesis: Prof. RNDr. Luboš Pick, CSc., DSc., Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Prague 8, Czech Republic Abstrakt: We focus on a certain weighted Hardy operator, with a continuous, quasi- concave weight, defined on a rearrangement-invariant Banach function spaces. The op- erators of Hardy type are of great use to the theory of function spaces. The mentioned operator is a more general version of the Hardy operator, whose boundedness was shown to be equivalent to a Sobolev-type embedding inequality. This thesis is con- cerned with the proof of existence of domain and range spaces of our Hardy operator that are optimal. This optimality should lead to the optimality in the Sobolev-type embedding equalities. Our another aim is to study supremum operators, which are also closely related to this issue, and establish some of their basic properties. Keywords: optimality, weighted Hardy operator, supremum operator | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | optimalita | cs_CZ |
dc.subject | váhový operátor Hardyovho typu | cs_CZ |
dc.subject | supremálny operátor | cs_CZ |
dc.subject | optimality | en_US |
dc.subject | weighted Hardy operator | en_US |
dc.subject | supremum operator | en_US |
dc.title | Optimal pairs of function spaces for weighted Hardy operators | en_US |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2011 | |
dcterms.dateAccepted | 2011-09-08 | |
dc.description.department | Department of Mathematical Analysis | en_US |
dc.description.department | Katedra matematické analýzy | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 112225 | |
dc.title.translated | Optimální dvojice prostorů funkcí pro váhové Hardyovy operátory | cs_CZ |
dc.contributor.referee | Gurka, Petr | |
dc.identifier.aleph | 001384895 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Mathematical Analysis | en_US |
thesis.degree.discipline | Matematická analýza | cs_CZ |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra matematické analýzy | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Mathematical Analysis | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Matematická analýza | cs_CZ |
uk.degree-discipline.en | Mathematical Analysis | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Názov práce: Optimálne páry priestorov funkcií pre váhove Hardyho operátory Autor: Rastislav Ol'hava Katedra: Katedra matematické analýzy Vedúci diplomovej práce: Prof. RNDr. Luboš Pick, CSc., DSc., Katedra matem- atické analýzy, Matematicko-fyzikální fakulta, Univerzita Karlova, Sokolovská 83, 186 75 Praha 8, Česká Republika Abstrakt: Zameriame sa na určitý váhový Hardyho operátor so spojitou kvazikonkáv- nou váhou, definovaný na Banachových priestoroch funkcií, v ktorých má každá funkcia rovnakú normu ako jej prerovnanie. V teórii priestorov funkcií majú tieto operátory široké využitie. V predchádzajúcom výskume bolo dokázané, že platí ekvivalencia medzi ohraničenost'ou niektorých z týchto operátorov a sobolevovskými vnoreniami. Nech je náš Hardyho operátor ohraničený z priestoru X do priestoru Y . Táto práca sa venuje hl'adaniu takej dvojice priestorov X a Y , ktorá je optimálna. Zmienená optimalita by pri d'alšom výzkume mala viest' k optimalite v určitých sobolevovských vnoreniach. Našim druhým ciel'om je štúdium supremálnych operátorov, ktoré tiež úzko súvisia s touto tématikou, a odvodenie niektorých ich základných vlastností. Kl'účové slová: optimalita, váhový operátor Hardyovho typu, supremálny operátor | cs_CZ |
uk.abstract.en | Title: Optimal pairs of function spaces for weighted Hardy operators Author: Rastislav Ol'hava Department: Department of Mathematical Analysis Supervisor of the master thesis: Prof. RNDr. Luboš Pick, CSc., DSc., Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Prague 8, Czech Republic Abstrakt: We focus on a certain weighted Hardy operator, with a continuous, quasi- concave weight, defined on a rearrangement-invariant Banach function spaces. The op- erators of Hardy type are of great use to the theory of function spaces. The mentioned operator is a more general version of the Hardy operator, whose boundedness was shown to be equivalent to a Sobolev-type embedding inequality. This thesis is con- cerned with the proof of existence of domain and range spaces of our Hardy operator that are optimal. This optimality should lead to the optimality in the Sobolev-type embedding equalities. Our another aim is to study supremum operators, which are also closely related to this issue, and establish some of their basic properties. Keywords: optimality, weighted Hardy operator, supremum operator | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzy | cs_CZ |
dc.identifier.lisID | 990013848950106986 | |