Zobrazit minimální záznam

Optimální dvojice prostorů funkcí pro váhové Hardyovy operátory
dc.contributor.advisorPick, Luboš
dc.creatorOľhava, Rastislav
dc.date.accessioned2017-05-08T13:11:47Z
dc.date.available2017-05-08T13:11:47Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/20.500.11956/49430
dc.description.abstractNázov práce: Optimálne páry priestorov funkcií pre váhove Hardyho operátory Autor: Rastislav Ol'hava Katedra: Katedra matematické analýzy Vedúci diplomovej práce: Prof. RNDr. Luboš Pick, CSc., DSc., Katedra matem- atické analýzy, Matematicko-fyzikální fakulta, Univerzita Karlova, Sokolovská 83, 186 75 Praha 8, Česká Republika Abstrakt: Zameriame sa na určitý váhový Hardyho operátor so spojitou kvazikonkáv- nou váhou, definovaný na Banachových priestoroch funkcií, v ktorých má každá funkcia rovnakú normu ako jej prerovnanie. V teórii priestorov funkcií majú tieto operátory široké využitie. V predchádzajúcom výskume bolo dokázané, že platí ekvivalencia medzi ohraničenost'ou niektorých z týchto operátorov a sobolevovskými vnoreniami. Nech je náš Hardyho operátor ohraničený z priestoru X do priestoru Y . Táto práca sa venuje hl'adaniu takej dvojice priestorov X a Y , ktorá je optimálna. Zmienená optimalita by pri d'alšom výzkume mala viest' k optimalite v určitých sobolevovských vnoreniach. Našim druhým ciel'om je štúdium supremálnych operátorov, ktoré tiež úzko súvisia s touto tématikou, a odvodenie niektorých ich základných vlastností. Kl'účové slová: optimalita, váhový operátor Hardyovho typu, supremálny operátorcs_CZ
dc.description.abstractTitle: Optimal pairs of function spaces for weighted Hardy operators Author: Rastislav Ol'hava Department: Department of Mathematical Analysis Supervisor of the master thesis: Prof. RNDr. Luboš Pick, CSc., DSc., Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Prague 8, Czech Republic Abstrakt: We focus on a certain weighted Hardy operator, with a continuous, quasi- concave weight, defined on a rearrangement-invariant Banach function spaces. The op- erators of Hardy type are of great use to the theory of function spaces. The mentioned operator is a more general version of the Hardy operator, whose boundedness was shown to be equivalent to a Sobolev-type embedding inequality. This thesis is con- cerned with the proof of existence of domain and range spaces of our Hardy operator that are optimal. This optimality should lead to the optimality in the Sobolev-type embedding equalities. Our another aim is to study supremum operators, which are also closely related to this issue, and establish some of their basic properties. Keywords: optimality, weighted Hardy operator, supremum operatoren_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectoptimalitacs_CZ
dc.subjectváhový operátor Hardyovho typucs_CZ
dc.subjectsupremálny operátorcs_CZ
dc.subjectoptimalityen_US
dc.subjectweighted Hardy operatoren_US
dc.subjectsupremum operatoren_US
dc.titleOptimal pairs of function spaces for weighted Hardy operatorsen_US
dc.typediplomová prácecs_CZ
dcterms.created2011
dcterms.dateAccepted2011-09-08
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId112225
dc.title.translatedOptimální dvojice prostorů funkcí pro váhové Hardyovy operátorycs_CZ
dc.contributor.refereeGurka, Petr
dc.identifier.aleph001384895
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineMathematical Analysisen_US
thesis.degree.disciplineMatematická analýzacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra matematické analýzycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematical Analysisen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická analýzacs_CZ
uk.degree-discipline.enMathematical Analysisen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csNázov práce: Optimálne páry priestorov funkcií pre váhove Hardyho operátory Autor: Rastislav Ol'hava Katedra: Katedra matematické analýzy Vedúci diplomovej práce: Prof. RNDr. Luboš Pick, CSc., DSc., Katedra matem- atické analýzy, Matematicko-fyzikální fakulta, Univerzita Karlova, Sokolovská 83, 186 75 Praha 8, Česká Republika Abstrakt: Zameriame sa na určitý váhový Hardyho operátor so spojitou kvazikonkáv- nou váhou, definovaný na Banachových priestoroch funkcií, v ktorých má každá funkcia rovnakú normu ako jej prerovnanie. V teórii priestorov funkcií majú tieto operátory široké využitie. V predchádzajúcom výskume bolo dokázané, že platí ekvivalencia medzi ohraničenost'ou niektorých z týchto operátorov a sobolevovskými vnoreniami. Nech je náš Hardyho operátor ohraničený z priestoru X do priestoru Y . Táto práca sa venuje hl'adaniu takej dvojice priestorov X a Y , ktorá je optimálna. Zmienená optimalita by pri d'alšom výzkume mala viest' k optimalite v určitých sobolevovských vnoreniach. Našim druhým ciel'om je štúdium supremálnych operátorov, ktoré tiež úzko súvisia s touto tématikou, a odvodenie niektorých ich základných vlastností. Kl'účové slová: optimalita, váhový operátor Hardyovho typu, supremálny operátorcs_CZ
uk.abstract.enTitle: Optimal pairs of function spaces for weighted Hardy operators Author: Rastislav Ol'hava Department: Department of Mathematical Analysis Supervisor of the master thesis: Prof. RNDr. Luboš Pick, CSc., DSc., Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Prague 8, Czech Republic Abstrakt: We focus on a certain weighted Hardy operator, with a continuous, quasi- concave weight, defined on a rearrangement-invariant Banach function spaces. The op- erators of Hardy type are of great use to the theory of function spaces. The mentioned operator is a more general version of the Hardy operator, whose boundedness was shown to be equivalent to a Sobolev-type embedding inequality. This thesis is con- cerned with the proof of existence of domain and range spaces of our Hardy operator that are optimal. This optimality should lead to the optimality in the Sobolev-type embedding equalities. Our another aim is to study supremum operators, which are also closely related to this issue, and establish some of their basic properties. Keywords: optimality, weighted Hardy operator, supremum operatoren_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ
dc.identifier.lisID990013848950106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV