dc.contributor.advisor | Pelikán, Josef | |
dc.creator | Kratochvíl, Jakub | |
dc.date.accessioned | 2017-05-08T13:17:01Z | |
dc.date.available | 2017-05-08T13:17:01Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/49451 | |
dc.description.abstract | Tato práce se zabývá aplikací metod redukce dimenze v antropologii a morfometrii. Zejména se sousteuje na nelinearní metody redukce dimenze. Práce zavádí nový postup nazývaný multipass redukce dimenze. Ukážeme, že pomocí multipass redukce dimenze lze vylepšit výsledky klasifikace a snížit počet dimenzí nutných pro klasifikaci pomocí klastrování. | cs_CZ |
dc.description.abstract | This thesis centers around dimensionality reduction and its usage on landmark-type data which are often used in anthropology and morphometrics. In particular we focus on non-linear dimensionality reduction methods - locally linear embedding and multidimensional scaling. We introduce a new approach to dimensionality reduction called multipass dimensionality reduction and show that improves the quality of classification as well as requiring less dimensions for successful classification than the traditional singlepass methods. | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | Redukce dimenze | cs_CZ |
dc.subject | morfometrie | cs_CZ |
dc.subject | locally linear embedding | cs_CZ |
dc.subject | multidimensional scaling | cs_CZ |
dc.subject | Dimensionality reduction | en_US |
dc.subject | morphometrics | en_US |
dc.subject | locally linear embedding | en_US |
dc.subject | multidimensional scaling | en_US |
dc.title | Dimension Reduction Techniques in Morhpometrics | en_US |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2011 | |
dcterms.dateAccepted | 2011-09-06 | |
dc.description.department | Department of Software and Computer Science Education | en_US |
dc.description.department | Katedra softwaru a výuky informatiky | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 73385 | |
dc.title.translated | Dimension Reduction Techniques in Morhpometrics | cs_CZ |
dc.contributor.referee | Mráz, František | |
dc.identifier.aleph | 001384464 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Software Systems | en_US |
thesis.degree.discipline | Softwarové systémy | cs_CZ |
thesis.degree.program | Computer Science | en_US |
thesis.degree.program | Informatika | cs_CZ |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra softwaru a výuky informatiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Software and Computer Science Education | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Softwarové systémy | cs_CZ |
uk.degree-discipline.en | Software Systems | en_US |
uk.degree-program.cs | Informatika | cs_CZ |
uk.degree-program.en | Computer Science | en_US |
thesis.grade.cs | Dobře | cs_CZ |
thesis.grade.en | Good | en_US |
uk.abstract.cs | Tato práce se zabývá aplikací metod redukce dimenze v antropologii a morfometrii. Zejména se sousteuje na nelinearní metody redukce dimenze. Práce zavádí nový postup nazývaný multipass redukce dimenze. Ukážeme, že pomocí multipass redukce dimenze lze vylepšit výsledky klasifikace a snížit počet dimenzí nutných pro klasifikaci pomocí klastrování. | cs_CZ |
uk.abstract.en | This thesis centers around dimensionality reduction and its usage on landmark-type data which are often used in anthropology and morphometrics. In particular we focus on non-linear dimensionality reduction methods - locally linear embedding and multidimensional scaling. We introduce a new approach to dimensionality reduction called multipass dimensionality reduction and show that improves the quality of classification as well as requiring less dimensions for successful classification than the traditional singlepass methods. | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra softwaru a výuky informatiky | cs_CZ |
dc.identifier.lisID | 990013844640106986 | |