dc.contributor.advisor | Janovský, Vladimír | |
dc.creator | Kovařík, Adam | |
dc.date.accessioned | 2017-05-08T13:52:59Z | |
dc.date.available | 2017-05-08T13:52:59Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/49605 | |
dc.description.abstract | Název práce: Model dopravního toku s překážkou Autor: Adam Kovařík Katedra (ústav): Katedra numerické matematiky Vedoucí diplomové práce: prof. RNDr. Vladimír Janovský, DrSc. e-mail vedoucího: janovsky@karlin.mff.cuni.cz Abstrakt: Tématem této práce je mikroskopický dopravní model typu follow-the-leader s překážkou popisující pohyb aut po kruhové dráze. Předpokládáme, že všichni řidiči mají stejné vlastnosti a že se nesmí vzájemně předjíždět. Představíme část z bohaté dyna- miky tohoto modelu včetně tzv. Hopfovy a Neimarkovy-Sackerovy bifurkace. Zavedeme tzv. POM a kvazi-POM řešení a ukážeme postup, jak je nalézt. Hlavním úkolem práce je pak zjistit, jaký vliv bude mít na OV-model s překážkou tzv. agresivní chování řidičů. Prozkoumáme i efekt proměnných reakčních dob na řešení a působení obou zmíněných faktorů současně. Pomocí numerických simulací zjistíme, že agresivita a rychlejší reakce mají pozitivní účinek na dopravní tok. Na závěr probereme ještě model s dvěma překáž- kami a model s jedním výjimečným řidičem. Klíčová slova: dynamický systém, obyčejné dif. rovnice, dopravní tok, překážka, agresivita. 1 | cs_CZ |
dc.description.abstract | Title: A traffic flow with a bottelneck Author: Adam Kovařík Department: Department of Numerical Mathematics Supervisor: prof. RNDr. Vladimír Janovský, DrSc. Supervisor's e-mail address: janovsky@karlin.mff.cuni.cz Abstract: In this paper we study a microscopic follow-the-leader traffic model on a circu- lar road with a bottleneck. We assume that all drivers are identical and overtaking is not permitted. We sketch a small part of the rich dynamics of the model including Hopf and Neimark-Sacker bifurcations. We introduce so called POM and quasi-POM solutions and an algorithm how to search them. The main goal of this work is to investigate how the optimal velocity model with a bottleneck deals with so called aggressive behavior of dri- vers. The effect of variable reaction time and a combination of both named factors is also tested. Using numerical simulations we'll find out that aggressiveness and faster reactions have positive effect on traffic flow. In the end we discuss models with two bottlenecks and with one extraordinary driver. Keywords: dynamical systems, ODEs, traffic flow, bottleneck, aggressiveness. 1 | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | dynamický systém | cs_CZ |
dc.subject | obyčejné dif. rovnice | cs_CZ |
dc.subject | dopravní tok | cs_CZ |
dc.subject | překážka | cs_CZ |
dc.subject | agresivita | cs_CZ |
dc.subject | dynamical systems | en_US |
dc.subject | ODEs | en_US |
dc.subject | traffic flow | en_US |
dc.subject | bottleneck | en_US |
dc.subject | aggressiveness | en_US |
dc.title | Model dopravního toku s překážkou | cs_CZ |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2011 | |
dcterms.dateAccepted | 2011-09-14 | |
dc.description.department | Department of Numerical Mathematics | en_US |
dc.description.department | Katedra numerické matematiky | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 111824 | |
dc.title.translated | A traffic flow with a bottelneck | en_US |
dc.contributor.referee | Vejchodský, Tomáš | |
dc.identifier.aleph | 001386608 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Mathematical modelling in physics and technology | en_US |
thesis.degree.discipline | Matematické modelování ve fyzice a technice | cs_CZ |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra numerické matematiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Numerical Mathematics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Matematické modelování ve fyzice a technice | cs_CZ |
uk.degree-discipline.en | Mathematical modelling in physics and technology | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Název práce: Model dopravního toku s překážkou Autor: Adam Kovařík Katedra (ústav): Katedra numerické matematiky Vedoucí diplomové práce: prof. RNDr. Vladimír Janovský, DrSc. e-mail vedoucího: janovsky@karlin.mff.cuni.cz Abstrakt: Tématem této práce je mikroskopický dopravní model typu follow-the-leader s překážkou popisující pohyb aut po kruhové dráze. Předpokládáme, že všichni řidiči mají stejné vlastnosti a že se nesmí vzájemně předjíždět. Představíme část z bohaté dyna- miky tohoto modelu včetně tzv. Hopfovy a Neimarkovy-Sackerovy bifurkace. Zavedeme tzv. POM a kvazi-POM řešení a ukážeme postup, jak je nalézt. Hlavním úkolem práce je pak zjistit, jaký vliv bude mít na OV-model s překážkou tzv. agresivní chování řidičů. Prozkoumáme i efekt proměnných reakčních dob na řešení a působení obou zmíněných faktorů současně. Pomocí numerických simulací zjistíme, že agresivita a rychlejší reakce mají pozitivní účinek na dopravní tok. Na závěr probereme ještě model s dvěma překáž- kami a model s jedním výjimečným řidičem. Klíčová slova: dynamický systém, obyčejné dif. rovnice, dopravní tok, překážka, agresivita. 1 | cs_CZ |
uk.abstract.en | Title: A traffic flow with a bottelneck Author: Adam Kovařík Department: Department of Numerical Mathematics Supervisor: prof. RNDr. Vladimír Janovský, DrSc. Supervisor's e-mail address: janovsky@karlin.mff.cuni.cz Abstract: In this paper we study a microscopic follow-the-leader traffic model on a circu- lar road with a bottleneck. We assume that all drivers are identical and overtaking is not permitted. We sketch a small part of the rich dynamics of the model including Hopf and Neimark-Sacker bifurcations. We introduce so called POM and quasi-POM solutions and an algorithm how to search them. The main goal of this work is to investigate how the optimal velocity model with a bottleneck deals with so called aggressive behavior of dri- vers. The effect of variable reaction time and a combination of both named factors is also tested. Using numerical simulations we'll find out that aggressiveness and faster reactions have positive effect on traffic flow. In the end we discuss models with two bottlenecks and with one extraordinary driver. Keywords: dynamical systems, ODEs, traffic flow, bottleneck, aggressiveness. 1 | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra numerické matematiky | cs_CZ |
dc.identifier.lisID | 990013866080106986 | |