dc.contributor.advisor | Mlček, Josef | |
dc.creator | Garlík, Michal | |
dc.date.accessioned | 2017-05-08T13:56:07Z | |
dc.date.available | 2017-05-08T13:56:07Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/49617 | |
dc.description.abstract | V předložené práci studujeme teorie prvého řádu a jejich Lindenbaumovy algebry zkoumáním vlastností řetězu BnT n<ω, nazvaného B-řetěz, kde BnT je podalgebra Lindenbaumovy algebry daná formulemi s nejvýše n volnými proměnnými. Obohatíme strukturu Lindenbaumovy algebry, abychom zachytili rozdíly mezi teoriemi, jejichž B-řetězy jsou člen po členu izomorfní. Podáme několik příkladů teorií a spočítáme jejich B-řetězy. Zkonstruujeme model Robin- sonovy aritmetiky s n-tou algebrou definovatelných množin izomorfní kartézskému součinu spočetné atomární saturované Booleovy algebry a spočetné bezatomární Booleovy algebry. 1 | cs_CZ |
dc.description.abstract | In the present work we study first-order theories and their Lindenbaum alge- bras by analyzing the properties of the chain BnT n<ω, called B-chain, where BnT is the subalgebra of the Lindenbaum algebra given by formulas with up to n free variables. We enrich the structure of Lindenbaum algebra in order to cap- ture some differences between theories with term-by-term isomorphic B-chains. Several examples of theories and calculations of their B-chains are given. We also construct a model of Robinson arithmetic, whose n-th algebras of definable sets are isomorphic to the Cartesian product of the countable atomic saturated Boolean algebra and the countable atomless Boolean algebra. 1 | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | teorie prvého řádu | cs_CZ |
dc.subject | Booleova algebra | cs_CZ |
dc.subject | Lindenbaumova algebra | cs_CZ |
dc.subject | first order theory | en_US |
dc.subject | Boolean algebra | en_US |
dc.subject | Lindenbaum algebra | en_US |
dc.title | Teorie a algebry formulí | cs_CZ |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2011 | |
dcterms.dateAccepted | 2011-09-15 | |
dc.description.department | Department of Theoretical Computer Science and Mathematical Logic | en_US |
dc.description.department | Katedra teoretické informatiky a matematické logiky | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 104868 | |
dc.title.translated | Theories and algebras of formulas | en_US |
dc.contributor.referee | Glivický, Petr | |
dc.identifier.aleph | 001387003 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Mathematical structures | en_US |
thesis.degree.discipline | Matematické struktury | cs_CZ |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra teoretické informatiky a matematické logiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Theoretical Computer Science and Mathematical Logic | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Matematické struktury | cs_CZ |
uk.degree-discipline.en | Mathematical structures | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | V předložené práci studujeme teorie prvého řádu a jejich Lindenbaumovy algebry zkoumáním vlastností řetězu BnT n<ω, nazvaného B-řetěz, kde BnT je podalgebra Lindenbaumovy algebry daná formulemi s nejvýše n volnými proměnnými. Obohatíme strukturu Lindenbaumovy algebry, abychom zachytili rozdíly mezi teoriemi, jejichž B-řetězy jsou člen po členu izomorfní. Podáme několik příkladů teorií a spočítáme jejich B-řetězy. Zkonstruujeme model Robin- sonovy aritmetiky s n-tou algebrou definovatelných množin izomorfní kartézskému součinu spočetné atomární saturované Booleovy algebry a spočetné bezatomární Booleovy algebry. 1 | cs_CZ |
uk.abstract.en | In the present work we study first-order theories and their Lindenbaum alge- bras by analyzing the properties of the chain BnT n<ω, called B-chain, where BnT is the subalgebra of the Lindenbaum algebra given by formulas with up to n free variables. We enrich the structure of Lindenbaum algebra in order to cap- ture some differences between theories with term-by-term isomorphic B-chains. Several examples of theories and calculations of their B-chains are given. We also construct a model of Robinson arithmetic, whose n-th algebras of definable sets are isomorphic to the Cartesian product of the countable atomic saturated Boolean algebra and the countable atomless Boolean algebra. 1 | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra teoretické informatiky a matematické logiky | cs_CZ |
dc.identifier.lisID | 990013870030106986 | |