Zobrazit minimální záznam

Segmentation of Bones in 3D CT Images
dc.contributor.advisorMatas, Jiří
dc.creatorKrčah, Marcel
dc.date.accessioned2017-05-08T14:06:58Z
dc.date.available2017-05-08T14:06:58Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/20.500.11956/49657
dc.description.abstractV oblasti zpracování biomedicínskych dat se za poslední desetiletí výrazně zvýšil zájem o algoritmy, které dokážou přesně, automaticky a bez jakékoliv předcházející informaci o tvaru, vysegmentovat hledanou kost. Tato práce popisuje plně automatickou metodu pro segmentaci stehenní kosti z 3D snímků výpočetní tomografie (CT). Algoritmus kombinuje metodu graph-cut se speciálním filtrem, který zvýrazňuje okraje kosti pomocí analýzy zakřivení lokální iso-oblasti. Navrhované řešení bylo otestováno na souboru 197 CT snímků a porovnáno s dalšími třemi plně automatickými segmentačními metodami. Výsledky experimentů ukazují, že navrhovaná metoda dosahuje nejlepší výsledky ze všech čtyř testovaných metod a je schopna vysegmentovat stehenní kost v 81% případech bez jakékoliv interakce s uživatelem či předcházející informaci o tvaru.cs_CZ
dc.description.abstractAccurate and automatic segmentation techniques that do not require any explicit prior model have been of high interest in the medical community. We propose a fully-automatic method for segmenting the femur from 3D Computed Tomography scans, based on the graph-cut segmentation framework and the bone boundary enhancement filter analyzing second-order local structures. The presented algorithm is evaluated in large-scale experiments, conducted on 197 CT volumes, and compared to other three automatic bone segmentation methods. Out of the four tested approaches, the proposed algorithm achieved most accurate results and segmented the femur correctly in 81% of the cases.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectsegmentacecs_CZ
dc.subjectvýpočetní tomogra fiecs_CZ
dc.subjectgraph-cutcs_CZ
dc.subjectfemurcs_CZ
dc.subjectsegmentationen_US
dc.subjectcomputed tomographyen_US
dc.subjectgraph-cuten_US
dc.subjectfemuren_US
dc.titleSegmentation of Bones in 3D CT Imagesen_US
dc.typediplomová prácecs_CZ
dcterms.created2011
dcterms.dateAccepted2011-09-05
dc.description.departmentDepartment of Software and Computer Science Educationen_US
dc.description.departmentKatedra softwaru a výuky informatikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId89194
dc.title.translatedSegmentation of Bones in 3D CT Imagescs_CZ
dc.contributor.refereeHoráček, Jan
dc.identifier.aleph001384129
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineSoftware Systemsen_US
thesis.degree.disciplineSoftwarové systémycs_CZ
thesis.degree.programComputer Scienceen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra softwaru a výuky informatikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Software and Computer Science Educationen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csSoftwarové systémycs_CZ
uk.degree-discipline.enSoftware Systemsen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV oblasti zpracování biomedicínskych dat se za poslední desetiletí výrazně zvýšil zájem o algoritmy, které dokážou přesně, automaticky a bez jakékoliv předcházející informaci o tvaru, vysegmentovat hledanou kost. Tato práce popisuje plně automatickou metodu pro segmentaci stehenní kosti z 3D snímků výpočetní tomografie (CT). Algoritmus kombinuje metodu graph-cut se speciálním filtrem, který zvýrazňuje okraje kosti pomocí analýzy zakřivení lokální iso-oblasti. Navrhované řešení bylo otestováno na souboru 197 CT snímků a porovnáno s dalšími třemi plně automatickými segmentačními metodami. Výsledky experimentů ukazují, že navrhovaná metoda dosahuje nejlepší výsledky ze všech čtyř testovaných metod a je schopna vysegmentovat stehenní kost v 81% případech bez jakékoliv interakce s uživatelem či předcházející informaci o tvaru.cs_CZ
uk.abstract.enAccurate and automatic segmentation techniques that do not require any explicit prior model have been of high interest in the medical community. We propose a fully-automatic method for segmenting the femur from 3D Computed Tomography scans, based on the graph-cut segmentation framework and the bone boundary enhancement filter analyzing second-order local structures. The presented algorithm is evaluated in large-scale experiments, conducted on 197 CT volumes, and compared to other three automatic bone segmentation methods. Out of the four tested approaches, the proposed algorithm achieved most accurate results and segmented the femur correctly in 81% of the cases.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra softwaru a výuky informatikycs_CZ
dc.identifier.lisID990013841290106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV