Aplikace Gröbnerových bází v kryptografii
Applications of Gröbner bases in cryptography
diplomová práce (OBHÁJENO)
![Náhled dokumentu](/bitstream/handle/20.500.11956/49727/thumbnail.png?sequence=7&isAllowed=y)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/49727Identifikátory
SIS: 79197
Kolekce
- Kvalifikační práce [11267]
Autor
Vedoucí práce
Oponent práce
Žemlička, Jan
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Matematické metody informační bezpečnosti
Katedra / ústav / klinika
Katedra algebry
Datum obhajoby
19. 9. 2011
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Velmi dobře
Klíčová slova (česky)
nekomutativní Gröbnerovy báze, Polly Cracker, bezpečnost, kryptoanalýzaKlíčová slova (anglicky)
noncommutative Gröbner bases, Polly Cracker, security, cryptanalysisNázev práce: Aplikace Gröbnerových bází v kryptografii Autor: Aleš Fuchs Katedra: Katedra algebry Vedoucí diplomové práce: Mgr. Jan Št'ovíček Ph.D., Katedra algebry Abstrakt: V této práci studujeme přípustná uspořádání a postupy redukce polynomu množinou jiných polynomů v prostředí polynomiálních okruhů nad konečnými tělesy. Zde hrají významnou roli Gröbnerovy báze nějakého ideálu, které díky svým vlastnostem umožňují řešit problém náležení do daného ideálu. Zkoumáme také vlastnosti takzvaných redukovaných Gröbnerových bází, které jsou pro daný ideál jednoznačně určené a v jistém ohledu mi- nimální. Dále se zabýváme rozšířením této teorie do prostředí volných alge- ber nad konečnými tělesy, kde proměnné nekomutují. Na rozdíl od prvního případu zde Gröbnerovy báze mohou být nekonečné i pro konečně generované oboustranné ideály. V poslední kapitole uvádíme asymetrický kryptosystém Polly Cracker založený právě na problému náležení do ideálu jak v komuta- tivní, tak v nekomutativní teorii. Zkoumáme známé metody kryptoanalýzy aplikované na tyto systémy a v několika případech i opatření, která útokům předchází. Souhrn opatření aplikujeme v poslední části věnované návrhům...
Title: Applications of Gröbner bases in cryptography Author: Aleš Fuchs Department: Department of Algebra Supervisor: Mgr. Jan Št'ovíček Ph.D., Department of Algebra Abstract: In the present paper we study admissible orders and techniques of multivariate polynomial division in the setting of polynomial rings over finite fields. The Gröbner bases of some ideal play a key role here, as they allow to solve the ideal membership problem thanks to their properties. We also explore features of so called reduced Gröbner bases, which are unique for a particular ideal and in some way also minimal. Further we will discuss the main facts about Gröbner bases also in the setting of free algebras over finite fields, where the variables are non-commuting. Contrary to the first case, Gröbner bases can be infinite here, even for some finitely generated two- sided ideals. In the last chapter we introduce an asymmetric cryptosystem Polly Cracker, based on the ideal membership problem in both commutative and noncommutative theory. We analyze some known cryptanalytic methods applied to these systems and in several cases also precautions dealing with them. Finally we summarize these precautions and introduce a blueprint of Polly Cracker reliable construction. Keywords: noncommutative Gröbner bases, Polly Cracker, security,...