Zobrazit minimální záznam

Matrix Algebra in Statistics
dc.contributor.advisorKulich, Michal
dc.creatorNavrátil, František
dc.date.accessioned2017-05-08T15:57:40Z
dc.date.available2017-05-08T15:57:40Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/20.500.11956/50090
dc.description.abstractbakalářské práce Název práce: Maticová algebra ve statistice Autor: František Navrátil Katedra: Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské práce: Doc. Mgr. Michal Kulich, Ph.D. Abstrakt: Práce se zabývá teorií maticové algebry, kterou lze uplatnit v pravděpodobnosti a statistice. Cílem práce je tuto látku srozumitelně a přehledně shrnout, aby student seznámený se základy teorie matic mohl rozšířit své znalosti a využít je při dalším studiu. Proto práce obsahuje množství definic a dokazovaných vět, příklady pro usnadnění pochopení látky, zmiňuje aplikace a uvádí odkazy na další literaturu. Práce začíná uvedením základních poznatků maticové algebry, které jsou součástí běžných kurzů lineární algebry. Následující kapitoly jsou již specifické (mimo jiné) pro pravděpodobnost a statistiku - zaměřují se zejména na speciální typy matic a jejich vlastnosti, důležité rozklady matic, funkce matic a maticové derivování. Klíčová slova: maticová algebra, statistika, idempotentní matice, spektrální rozklad, Kroneckerův součincs_CZ
dc.description.abstractof the bachelor thesis Title: Matrix Algebra in Statistics Author: František Navrátil Department: Department of Probability and Mathematical Statistics Supervisor: Doc. Mgr. Michal Kulich Ph.D. Abstract: The thesis deals with the theory of matrix algrebra, which is applicable in probability and statistics. The aim of the thesis is to summarize it in a clear and understandable way, so that the student familiar with the basics of matrix theory can expand his knowledge and use it in further studies. Therefore, the thesis contains many definitions and proved theorems, and examples to help understanding the theory. Applications are mentioned. It also provides references for further reading. The thesis begins with a brief summary of basic definitions and results in matrix algebra, which are covered in the usual courses on linear algebra. Subsequent chapters are specific, inter alia, for probability and statistics - in particular, they focus on special types of matrices and their properties, important matrix decompositions, functions of matrices and matrix difierentiation. Keywords: matrix algebra, statistics, idempotent matrix, spectral decomposition, Kronecker producten_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectMaticová algebracs_CZ
dc.subjectstatistikacs_CZ
dc.subjectidempotentní maticecs_CZ
dc.subjectspektrální rozkladcs_CZ
dc.subjectKroneckerův součincs_CZ
dc.subjectMatrix algebraen_US
dc.subjectstatisticsen_US
dc.subjectidempotent matrixen_US
dc.subjectspectral decompositionen_US
dc.subjectKronecker producten_US
dc.titleMaticová algebra ve statisticecs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2011
dcterms.dateAccepted2011-09-12
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId91026
dc.title.translatedMatrix Algebra in Statisticsen_US
dc.contributor.refereeAntoch, Jaromír
dc.identifier.aleph001385618
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineFinancial Mathematicsen_US
thesis.degree.disciplineFinanční matematikacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csFinanční matematikacs_CZ
uk.degree-discipline.enFinancial Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csbakalářské práce Název práce: Maticová algebra ve statistice Autor: František Navrátil Katedra: Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské práce: Doc. Mgr. Michal Kulich, Ph.D. Abstrakt: Práce se zabývá teorií maticové algebry, kterou lze uplatnit v pravděpodobnosti a statistice. Cílem práce je tuto látku srozumitelně a přehledně shrnout, aby student seznámený se základy teorie matic mohl rozšířit své znalosti a využít je při dalším studiu. Proto práce obsahuje množství definic a dokazovaných vět, příklady pro usnadnění pochopení látky, zmiňuje aplikace a uvádí odkazy na další literaturu. Práce začíná uvedením základních poznatků maticové algebry, které jsou součástí běžných kurzů lineární algebry. Následující kapitoly jsou již specifické (mimo jiné) pro pravděpodobnost a statistiku - zaměřují se zejména na speciální typy matic a jejich vlastnosti, důležité rozklady matic, funkce matic a maticové derivování. Klíčová slova: maticová algebra, statistika, idempotentní matice, spektrální rozklad, Kroneckerův součincs_CZ
uk.abstract.enof the bachelor thesis Title: Matrix Algebra in Statistics Author: František Navrátil Department: Department of Probability and Mathematical Statistics Supervisor: Doc. Mgr. Michal Kulich Ph.D. Abstract: The thesis deals with the theory of matrix algrebra, which is applicable in probability and statistics. The aim of the thesis is to summarize it in a clear and understandable way, so that the student familiar with the basics of matrix theory can expand his knowledge and use it in further studies. Therefore, the thesis contains many definitions and proved theorems, and examples to help understanding the theory. Applications are mentioned. It also provides references for further reading. The thesis begins with a brief summary of basic definitions and results in matrix algebra, which are covered in the usual courses on linear algebra. Subsequent chapters are specific, inter alia, for probability and statistics - in particular, they focus on special types of matrices and their properties, important matrix decompositions, functions of matrices and matrix difierentiation. Keywords: matrix algebra, statistics, idempotent matrix, spectral decomposition, Kronecker producten_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
dc.identifier.lisID990013856180106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV