dc.contributor.advisor | Feistauer, Miloslav | |
dc.creator | Monhartová, Petra | |
dc.date.accessioned | 2017-05-08T16:24:42Z | |
dc.date.available | 2017-05-08T16:24:42Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/50191 | |
dc.description.abstract | V předložené práci studujeme numerické metody pro řešení obyčejných diferenciálních rovnic s počátečními podmínkami. Pomocí Tay- lorova vzorce odvodíme některé jednokrokové numerické metody. Srovnáme numerická řešení vypočítaná pomocí explicitní Eulerovy metody a impli- citní Eulerovy metody. Budeme se zabývat Rungeovo-Kuttovými metodami 2. a 4. řádu. Zjistíme, jak přesně řešení získané pomocí těchto metod aproxi- muje přesné řešení obyčejných diferenciálních rovnic. Dále studujeme odhady chyby těchto numerických řešení obyčejných diferenciálních rovnic pomocí metody polovičního kroku. 1 | cs_CZ |
dc.description.abstract | In the present work we study numerical methods for the nu- merical solution of initial value problems for ordinary differential equations. With the aid of the Taylor formula we derive several one-step methods. We compare numerical solution computed with explicit and implicit Eu- ler methods. Moreove, we are concerned with second-order and fourth-order Runge-Kutta methods. We find how accurately the numerical methods obta- ined with the aid of these methods approximate the exact solution. Further we estimate the error of these method by the half-step method. 1 | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.title | Numerické řešení obyčejných diferenciálních rovnic | cs_CZ |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2011 | |
dcterms.dateAccepted | 2011-09-06 | |
dc.description.department | Department of Numerical Mathematics | en_US |
dc.description.department | Katedra numerické matematiky | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 42702 | |
dc.title.translated | Numerical solution of ordinary differential equations | en_US |
dc.contributor.referee | Janovský, Vladimír | |
dc.identifier.aleph | 001384461 | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | General Mathematics | en_US |
thesis.degree.discipline | Obecná matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra numerické matematiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Numerical Mathematics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná matematika | cs_CZ |
uk.degree-discipline.en | General Mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Velmi dobře | cs_CZ |
thesis.grade.en | Very good | en_US |
uk.abstract.cs | V předložené práci studujeme numerické metody pro řešení obyčejných diferenciálních rovnic s počátečními podmínkami. Pomocí Tay- lorova vzorce odvodíme některé jednokrokové numerické metody. Srovnáme numerická řešení vypočítaná pomocí explicitní Eulerovy metody a impli- citní Eulerovy metody. Budeme se zabývat Rungeovo-Kuttovými metodami 2. a 4. řádu. Zjistíme, jak přesně řešení získané pomocí těchto metod aproxi- muje přesné řešení obyčejných diferenciálních rovnic. Dále studujeme odhady chyby těchto numerických řešení obyčejných diferenciálních rovnic pomocí metody polovičního kroku. 1 | cs_CZ |
uk.abstract.en | In the present work we study numerical methods for the nu- merical solution of initial value problems for ordinary differential equations. With the aid of the Taylor formula we derive several one-step methods. We compare numerical solution computed with explicit and implicit Eu- ler methods. Moreove, we are concerned with second-order and fourth-order Runge-Kutta methods. We find how accurately the numerical methods obta- ined with the aid of these methods approximate the exact solution. Further we estimate the error of these method by the half-step method. 1 | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra numerické matematiky | cs_CZ |
dc.identifier.lisID | 990013844610106986 | |