dc.contributor.advisor | Bárta, Tomáš | |
dc.creator | Peltan, Libor | |
dc.date.accessioned | 2017-05-08T16:43:46Z | |
dc.date.available | 2017-05-08T16:43:46Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/50236 | |
dc.description.abstract | U určitých typů funkcí daných vzorci (ekvivalentně: funkcí ze tříd uzavřených na aritmetické operace) jsme za uvedených předpokladů dokázali monotonii na nějakých okolích +∞. Jsou to: vzorce s exp, log, sin, arctg apod. s omezením na definiční obory těchto funkcí; mocninné řady s kokonečně mnoha koeficienty kladnými; různé třídy funkcí dané vzorci s požadavkem zachování takové mono- tonie při sčítání, nebo při násobení, nebo monotonie plynoucí z konečného počtu nulových bodů; a nakonec vzorce s druhou odmocninou. 1 | cs_CZ |
dc.description.abstract | For certain types of functions expressible with formula (equivalently: functions from classes closed to arithmetic operations) under stated assumptions, we prove monotonicity at some neighbourhood of +∞. They are: formulas containing exp, log, sin, arctan, etc. with constrainted domain of these functions; power series with cofinite many coefficients positive; various classes of functions expressible with formulas with the requirement of preserving monotony in summation, or multiplication, or the monotony resulting from having a finite number of zero points; and finally formulas with square root. 1 | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | elementární funkce | cs_CZ |
dc.subject | monotónní funkce | cs_CZ |
dc.subject | funkce vyjádřitelná vzorcem | cs_CZ |
dc.subject | meromorfní funkce | cs_CZ |
dc.subject | elementary functions | en_US |
dc.subject | monotonic functions | en_US |
dc.subject | functions expressible with formula | en_US |
dc.subject | meromorphic functions | en_US |
dc.title | Monotonie funkcí vyjádřitelných pomocí elementárních funkcí | cs_CZ |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2011 | |
dcterms.dateAccepted | 2011-09-14 | |
dc.description.department | Department of Mathematical Analysis | en_US |
dc.description.department | Katedra matematické analýzy | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 85379 | |
dc.title.translated | Monotonicity of functions which can be expressed using elementary functions | en_US |
dc.contributor.referee | Pyrih, Pavel | |
dc.identifier.aleph | 001386595 | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | General Mathematics | en_US |
thesis.degree.discipline | Obecná matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra matematické analýzy | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Mathematical Analysis | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná matematika | cs_CZ |
uk.degree-discipline.en | General Mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | U určitých typů funkcí daných vzorci (ekvivalentně: funkcí ze tříd uzavřených na aritmetické operace) jsme za uvedených předpokladů dokázali monotonii na nějakých okolích +∞. Jsou to: vzorce s exp, log, sin, arctg apod. s omezením na definiční obory těchto funkcí; mocninné řady s kokonečně mnoha koeficienty kladnými; různé třídy funkcí dané vzorci s požadavkem zachování takové mono- tonie při sčítání, nebo při násobení, nebo monotonie plynoucí z konečného počtu nulových bodů; a nakonec vzorce s druhou odmocninou. 1 | cs_CZ |
uk.abstract.en | For certain types of functions expressible with formula (equivalently: functions from classes closed to arithmetic operations) under stated assumptions, we prove monotonicity at some neighbourhood of +∞. They are: formulas containing exp, log, sin, arctan, etc. with constrainted domain of these functions; power series with cofinite many coefficients positive; various classes of functions expressible with formulas with the requirement of preserving monotony in summation, or multiplication, or the monotony resulting from having a finite number of zero points; and finally formulas with square root. 1 | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzy | cs_CZ |
dc.identifier.lisID | 990013865950106986 | |