Zobrazit minimální záznam

Odhady algebraické chyby a zastavovací kritéria v numerickém řešení parciálních diferenciálních rovnic
dc.creatorPapež, Jan
dc.date.accessioned2021-05-24T12:28:12Z
dc.date.available2021-05-24T12:28:12Z
dc.date.issued2014
dc.identifier.urihttp://hdl.handle.net/20.500.11956/53691
dc.description.abstractNázev práce: Odhady algebraické chyby a zastavovací kritéria v numerickém řešení parciálních diferenciálních rovnic Autor: Jan Papež Katedra: Katedra numerické matematiky Vedoucí diplomové práce: prof. Ing. Zdeněk Strakoš, DrSc. Abstrakt: Po uvedení modelového problému a jeho vlastností je v práci popsána metoda sdružených gradientů (Conjugate Gradient Method - CG), jsou uvedeny odhady energetické normy chyby a je navržena heuristika pro adaptivní zpřesňování odhadů ve výpočtech. Na konkrétních příkladech je ukázán rozdíl v lokálním chování algebraické a diskretizační chyby v nume- rickém řešení modelového problému. Dále jsou uvedeny a posteriori odhady diskretizační a celkové chyby, které zahrnují chybu řešení algebraické sou- stavy. Myšlenka použití více sítí při řešení modelového problému je ukázána na víceúrovňové metodě (multigrid method). Poté je popsána Deuflhardova metoda Cascadic Conjugate Gradient Method (CCG), pro kterou jsou odvo- zena nová zastavovací kritéria s využitím odhadů algebraické a diskretizační chyby popsaných v předchozích částech předložené práce. Na závěr je metoda CCG s novými zastavovacími kritérii testována. Klíčová slova: numerické řešení parciálních...cs_CZ
dc.description.abstractTitle: Estimation of the algebraic error and stopping criteria in numerical solution of partial differential equations Author: Jan Papež Department: Department of Numerical Mathematics Supervisor of the master thesis: Zdeněk Strakoš Abstract: After introduction of the model problem and its properties we describe the Conjugate Gradient Method (CG). We present the estimates of the energy norm of the error and a heuristic for the adaptive refinement of the estimate. The difference in the local behaviour of the discretization and the algebraic error is illustrated by numerical experiments using the given model problem. A posteriori estimates for the discretization and the total error that take into account the inexact solution of the algebraic system are then discussed. In order to get a useful perspective, we briefly recall the multigrid method. Then the Cascadic Conjugate Gradient Method of Deuflhard (CCG) is presented. Using the estimates for the error presented in the preceding parts of the thesis, the new stopping criteria for CCG are proposed. The CCG method with the new stopping criteria is then tested. Keywords: numerical PDE, discretization error, algebraic error, error es- timates, locality of the error, adaptivityen_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectnumerical PDEen_US
dc.subjectdiscretization erroren_US
dc.subjectalgebraic erroren_US
dc.subjecterror estimatesen_US
dc.subjectlocality of the erroren_US
dc.subjectadaptivityen_US
dc.subjectnumerické řešení parciálních diferenciálních rovniccs_CZ
dc.subjectchyba diskretizacecs_CZ
dc.subjectalgebraická chybacs_CZ
dc.subjectodhady chybycs_CZ
dc.subjectlokální chování chybycs_CZ
dc.subjectadaptivitacs_CZ
dc.titleEstimation of the algebraic error and stopping criteria in numerical solution of partial differential equationsen_US
dc.typerigorózní prácecs_CZ
dcterms.created2014
dcterms.dateAccepted2014-02-13
dc.description.departmentKatedra numerické matematikycs_CZ
dc.description.departmentDepartment of Numerical Mathematicsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId146693
dc.title.translatedOdhady algebraické chyby a zastavovací kritéria v numerickém řešení parciálních diferenciálních rovniccs_CZ
dc.identifier.aleph001682910
thesis.degree.nameRNDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplineNumerická a výpočtová matematikacs_CZ
thesis.degree.disciplineNumerical and computational mathematicsen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typerigorózní prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra numerické matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Numerical Mathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csNumerická a výpočtová matematikacs_CZ
uk.degree-discipline.enNumerical and computational mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csUznánocs_CZ
thesis.grade.enRecognizeden_US
uk.abstract.csNázev práce: Odhady algebraické chyby a zastavovací kritéria v numerickém řešení parciálních diferenciálních rovnic Autor: Jan Papež Katedra: Katedra numerické matematiky Vedoucí diplomové práce: prof. Ing. Zdeněk Strakoš, DrSc. Abstrakt: Po uvedení modelového problému a jeho vlastností je v práci popsána metoda sdružených gradientů (Conjugate Gradient Method - CG), jsou uvedeny odhady energetické normy chyby a je navržena heuristika pro adaptivní zpřesňování odhadů ve výpočtech. Na konkrétních příkladech je ukázán rozdíl v lokálním chování algebraické a diskretizační chyby v nume- rickém řešení modelového problému. Dále jsou uvedeny a posteriori odhady diskretizační a celkové chyby, které zahrnují chybu řešení algebraické sou- stavy. Myšlenka použití více sítí při řešení modelového problému je ukázána na víceúrovňové metodě (multigrid method). Poté je popsána Deuflhardova metoda Cascadic Conjugate Gradient Method (CCG), pro kterou jsou odvo- zena nová zastavovací kritéria s využitím odhadů algebraické a diskretizační chyby popsaných v předchozích částech předložené práce. Na závěr je metoda CCG s novými zastavovacími kritérii testována. Klíčová slova: numerické řešení parciálních...cs_CZ
uk.abstract.enTitle: Estimation of the algebraic error and stopping criteria in numerical solution of partial differential equations Author: Jan Papež Department: Department of Numerical Mathematics Supervisor of the master thesis: Zdeněk Strakoš Abstract: After introduction of the model problem and its properties we describe the Conjugate Gradient Method (CG). We present the estimates of the energy norm of the error and a heuristic for the adaptive refinement of the estimate. The difference in the local behaviour of the discretization and the algebraic error is illustrated by numerical experiments using the given model problem. A posteriori estimates for the discretization and the total error that take into account the inexact solution of the algebraic system are then discussed. In order to get a useful perspective, we briefly recall the multigrid method. Then the Cascadic Conjugate Gradient Method of Deuflhard (CCG) is presented. Using the estimates for the error presented in the preceding parts of the thesis, the new stopping criteria for CCG are proposed. The CCG method with the new stopping criteria is then tested. Keywords: numerical PDE, discretization error, algebraic error, error es- timates, locality of the error, adaptivityen_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra numerické matematikycs_CZ
thesis.grade.codeU
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusU
dc.identifier.lisID990016829100106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV