Testování identit
Identity checking
bachelor thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/5810Identifiers
Study Information System: 43052
Collections
- Kvalifikační práce [11264]
Author
Advisor
Referee
Žemlička, Jan
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
General Mathematics
Department
Department of Algebra
Date of defense
28. 6. 2006
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
Czech
Grade
Very good
Nazev prace: Testovdni identit Autor: FrantiSek Polnch Katedra (ustav): Katedra algebry Vedouci bakalafske prace: RNDr. David Stanovsky, Ph.D. e-mail vedouciho: stanovsk@karlin.mff.citni.cz Abstrakt: Na overeni, zda dana identita (napf. komlttativita, asociativita, apod.) plati v dane algebre (grupe, okrului,...), existuje ocividny algoritmtts, ktery ma exponencidlni slozitost vzh- ledem kdelce zadane identity (profixm'algebru)- Neni tezke nahlednout, ze tento problemje pro libovolnou algebra v I ride co-NP a ze existuji algebry, pro ktere je co-NP-uplny. Na druhou stranu, pro mnoho algeber (napr. pro abelovske grupy) existitje algoritmus polynomidlni. Ex- istuje mezindrodni projekt, jehoz cilein je charakterizovat ty algebry, pro ktere je tento prob- lem pollfnomidlni, rcsp. co-NP-iiplny. Cflem tcto prdceje shrnout nektere zndme vysledky o grupdch a okruzich. Konkretne ukdzeme polynomidlni algoritmy pro testovdni identit v nilpo- tentnich i dihedrdlnfch grupdch a nilpotentnich okruzich, a dokdzeme co-NP-iiplnost testovdni identit v nenilpotcntnfch okruzich. Klicova slova: testovdni identit, slozitost, grupy, okruhy Title: Identity checking Author: Franlisek Polach Department: Department of Algebra Supervisor: RNDr. David Stanovsky, Ph.D. Supervisor's e-mail address: stanovsk@karlin.inff.cuni.cz Abstract:...
Nazev prace: Testovdni identit Autor: FrantiSek Polnch Katedra (ustav): Katedra algebry Vedouci bakalafske prace: RNDr. David Stanovsky, Ph.D. e-mail vedouciho: stanovsk@karlin.mff.citni.cz Abstrakt: Na overeni, zda dana identita (napf. komlttativita, asociativita, apod.) plati v dane algebre (grupe, okrului,...), existuje ocividny algoritmtts, ktery ma exponencidlni slozitost vzh- ledem kdelce zadane identity (profixm'algebru)- Neni tezke nahlednout, ze tento problemje pro libovolnou algebra v I ride co-NP a ze existuji algebry, pro ktere je co-NP-uplny. Na druhou stranu, pro mnoho algeber (napr. pro abelovske grupy) existitje algoritmus polynomidlni. Ex- istuje mezindrodni projekt, jehoz cilein je charakterizovat ty algebry, pro ktere je tento prob- lem pollfnomidlni, rcsp. co-NP-iiplny. Cflem tcto prdceje shrnout nektere zndme vysledky o grupdch a okruzich. Konkretne ukdzeme polynomidlni algoritmy pro testovdni identit v nilpo- tentnich i dihedrdlnfch grupdch a nilpotentnich okruzich, a dokdzeme co-NP-iiplnost testovdni identit v nenilpotcntnfch okruzich. Klicova slova: testovdni identit, slozitost, grupy, okruhy Title: Identity checking Author: Franlisek Polach Department: Department of Algebra Supervisor: RNDr. David Stanovsky, Ph.D. Supervisor's e-mail address: stanovsk@karlin.inff.cuni.cz Abstract:...