Coxův bodový proces
Cox point process
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/5821Identifikátory
SIS: 42966
Kolekce
- Kvalifikační práce [11242]
Autor
Vedoucí práce
Oponent práce
Lechnerová, Radka
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra pravděpodobnosti a matematické statistiky
Datum obhajoby
27. 6. 2006
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
Na/ev praee: Coxfiv bodovy Autor: Barbara Kocnrova Katedra (ust.av): KalodrM pravdepodolmosli a uiatematicke statisiiky Vedonci bakalafske praee: Prof. KNDr. Viktor Beries, DrSe. e-mail vedonciho: Vikl nr.Benesviinlf.cuiti.e/ Abstrakt: V paidiozcur pr;ici st.ndujoinr bodovo prfjcesy. XabyvAine sr siniulac:i a, fil- trovannii Coxova bodovrlio proccsu ri/onclio Gauniia Onistehi-UhlonbeekovytTi jiro- tics^in. K odhadu uahodiir int.cn/ity C'oxova. pi'occsn jsnio zvolili bayesovsky jn'isiup s vynxitiui melody Mai'kov C'liain KJoiit.c C'urlo a Metrupolis-Hastiiigsova algoritinu rox(Mii a /.anikii pro bodovc Tit.k1: Cox point process Author: Harbora Kocnrova Dcparlinont: Dcpartinctit of Probability and Mnthrmatioa.j Statistics Supervisor: Prof. RiNDr. Viktor Hours, DrSc. Supervisor's e-uiail address Viktor.Benesf'inff.eniLi.c^ Abstract: hi the present work the spatial point processes, particularly Cox point pro- cess driven by Ganiina-Ornstoiu Uhlenberk process is studied. We also discuss how to simulate this Cox process and the tittering problem. To obtain the efficient [ilrored value we consider a Bayesiaii inference with using Markov C'liain Moult; Carlo me- thods and Birth-death Metropolis-Hastings algorithm.
Na/ev praee: Coxfiv bodovy Autor: Barbara Kocnrova Katedra (ust.av): KalodrM pravdepodolmosli a uiatematicke statisiiky Vedonci bakalafske praee: Prof. KNDr. Viktor Beries, DrSe. e-mail vedonciho: Vikl nr.Benesviinlf.cuiti.e/ Abstrakt: V paidiozcur pr;ici st.ndujoinr bodovo prfjcesy. XabyvAine sr siniulac:i a, fil- trovannii Coxova bodovrlio proccsu ri/onclio Gauniia Onistehi-UhlonbeekovytTi jiro- tics^in. K odhadu uahodiir int.cn/ity C'oxova. pi'occsn jsnio zvolili bayesovsky jn'isiup s vynxitiui melody Mai'kov C'liain KJoiit.c C'urlo a Metrupolis-Hastiiigsova algoritinu rox(Mii a /.anikii pro bodovc Tit.k1: Cox point process Author: Harbora Kocnrova Dcparlinont: Dcpartinctit of Probability and Mnthrmatioa.j Statistics Supervisor: Prof. RiNDr. Viktor Hours, DrSc. Supervisor's e-uiail address Viktor.Benesf'inff.eniLi.c^ Abstract: hi the present work the spatial point processes, particularly Cox point pro- cess driven by Ganiina-Ornstoiu Uhlenberk process is studied. We also discuss how to simulate this Cox process and the tittering problem. To obtain the efficient [ilrored value we consider a Bayesiaii inference with using Markov C'liain Moult; Carlo me- thods and Birth-death Metropolis-Hastings algorithm.