Zobrazit minimální záznam

Factorization of polynomials over finite fields
dc.contributor.advisorŽemlička, Jan
dc.creatorStraka, Milan
dc.date.accessioned2017-03-29T13:28:31Z
dc.date.available2017-03-29T13:28:31Z
dc.date.issued2006
dc.identifier.urihttp://hdl.handle.net/20.500.11956/5842
dc.description.abstractNazcv prace: Faktorizace polynoinu nad konccnynii telesy Autor: Milan Straka Katcdra (ustav): Katcdra algebry Vedouci bakalarske prace: Mgr. Jan Zcmlicka, Ph.D. E-mail vedouciho: Jan.Zemlicka((hnff. cuni.cz Abstrakt: Cilem prace je prozkoumat problem rozkladu polynomn nad konecnym telc- scm na soucin ircducibilnich polynoinu. PopHanim nekolika algoritmu hledaji- cich tento rozklad se ukaze, ze tento problem je vzdy fcsitclny v polynornialnim case vzhleclem kc stupni polynomu a poctu prvku konecneho telcsa. U jeduoho z algoritnm je po])sana implenientace s vclnii clobrou asymptotic- kou casovou slozito.sti O(nLylD log c/}, kdc i\. jc stupen rozkladaneho polynuinn nad telesem « q prvky. Program pouzivajiei jcdnodnssi, ale prakticky rychlcjsi variantu tohoto algoritnm jc soucasti ])racc. Klicova slova: faktorizace, kouecna telesa, polynoniy, algoritmns Title: Factoring polynomials over finite fields Author: Milan Straka Department: Department of Algebra Supervisor: Mgr. Jan Zemlicka, Ph.D. Supervisor's e-mail address: Jan. Zcirilicka@mJJ.cum.cz Abstract: The goal of this work is to present the problem of the decomposition of a polyno- mial over a finite field into a product of irreducible polynomials. By describing algorithms solving this problem, we show that the decomposition can always be found in...en_US
dc.description.abstractNazcv prace: Faktorizace polynoinu nad konccnynii telesy Autor: Milan Straka Katcdra (ustav): Katcdra algebry Vedouci bakalarske prace: Mgr. Jan Zcmlicka, Ph.D. E-mail vedouciho: Jan.Zemlicka((hnff. cuni.cz Abstrakt: Cilem prace je prozkoumat problem rozkladu polynomn nad konecnym telc- scm na soucin ircducibilnich polynoinu. PopHanim nekolika algoritmu hledaji- cich tento rozklad se ukaze, ze tento problem je vzdy fcsitclny v polynornialnim case vzhleclem kc stupni polynomu a poctu prvku konecneho telcsa. U jeduoho z algoritnm je po])sana implenientace s vclnii clobrou asymptotic- kou casovou slozito.sti O(nLylD log c/}, kdc i\. jc stupen rozkladaneho polynuinn nad telesem « q prvky. Program pouzivajiei jcdnodnssi, ale prakticky rychlcjsi variantu tohoto algoritnm jc soucasti ])racc. Klicova slova: faktorizace, kouecna telesa, polynoniy, algoritmns Title: Factoring polynomials over finite fields Author: Milan Straka Department: Department of Algebra Supervisor: Mgr. Jan Zemlicka, Ph.D. Supervisor's e-mail address: Jan. Zcirilicka@mJJ.cum.cz Abstract: The goal of this work is to present the problem of the decomposition of a polyno- mial over a finite field into a product of irreducible polynomials. By describing algorithms solving this problem, we show that the decomposition can always be found in...cs_CZ
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleFaktorizace polynomů nad konečnými tělesycs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2006
dcterms.dateAccepted2006-06-26
dc.description.departmentKatedra algebrycs_CZ
dc.description.departmentDepartment of Algebraen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId42862
dc.title.translatedFactorization of polynomials over finite fieldsen_US
dc.contributor.refereeStanovský, David
dc.identifier.aleph000836804
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Computer Scienceen_US
thesis.degree.disciplineObecná informatikacs_CZ
thesis.degree.programComputer Scienceen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra algebrycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Algebraen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná informatikacs_CZ
uk.degree-discipline.enGeneral Computer Scienceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csNazcv prace: Faktorizace polynoinu nad konccnynii telesy Autor: Milan Straka Katcdra (ustav): Katcdra algebry Vedouci bakalarske prace: Mgr. Jan Zcmlicka, Ph.D. E-mail vedouciho: Jan.Zemlicka((hnff. cuni.cz Abstrakt: Cilem prace je prozkoumat problem rozkladu polynomn nad konecnym telc- scm na soucin ircducibilnich polynoinu. PopHanim nekolika algoritmu hledaji- cich tento rozklad se ukaze, ze tento problem je vzdy fcsitclny v polynornialnim case vzhleclem kc stupni polynomu a poctu prvku konecneho telcsa. U jeduoho z algoritnm je po])sana implenientace s vclnii clobrou asymptotic- kou casovou slozito.sti O(nLylD log c/}, kdc i\. jc stupen rozkladaneho polynuinn nad telesem « q prvky. Program pouzivajiei jcdnodnssi, ale prakticky rychlcjsi variantu tohoto algoritnm jc soucasti ])racc. Klicova slova: faktorizace, kouecna telesa, polynoniy, algoritmns Title: Factoring polynomials over finite fields Author: Milan Straka Department: Department of Algebra Supervisor: Mgr. Jan Zemlicka, Ph.D. Supervisor's e-mail address: Jan. Zcirilicka@mJJ.cum.cz Abstract: The goal of this work is to present the problem of the decomposition of a polyno- mial over a finite field into a product of irreducible polynomials. By describing algorithms solving this problem, we show that the decomposition can always be found in...cs_CZ
uk.abstract.enNazcv prace: Faktorizace polynoinu nad konccnynii telesy Autor: Milan Straka Katcdra (ustav): Katcdra algebry Vedouci bakalarske prace: Mgr. Jan Zcmlicka, Ph.D. E-mail vedouciho: Jan.Zemlicka((hnff. cuni.cz Abstrakt: Cilem prace je prozkoumat problem rozkladu polynomn nad konecnym telc- scm na soucin ircducibilnich polynoinu. PopHanim nekolika algoritmu hledaji- cich tento rozklad se ukaze, ze tento problem je vzdy fcsitclny v polynornialnim case vzhleclem kc stupni polynomu a poctu prvku konecneho telcsa. U jeduoho z algoritnm je po])sana implenientace s vclnii clobrou asymptotic- kou casovou slozito.sti O(nLylD log c/}, kdc i\. jc stupen rozkladaneho polynuinn nad telesem « q prvky. Program pouzivajiei jcdnodnssi, ale prakticky rychlcjsi variantu tohoto algoritnm jc soucasti ])racc. Klicova slova: faktorizace, kouecna telesa, polynoniy, algoritmns Title: Factoring polynomials over finite fields Author: Milan Straka Department: Department of Algebra Supervisor: Mgr. Jan Zemlicka, Ph.D. Supervisor's e-mail address: Jan. Zcirilicka@mJJ.cum.cz Abstract: The goal of this work is to present the problem of the decomposition of a polyno- mial over a finite field into a product of irreducible polynomials. By describing algorithms solving this problem, we show that the decomposition can always be found in...en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra algebrycs_CZ
dc.identifier.lisID990008368040106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV