Zobrazit minimální záznam

Numerical solution of convection-diffusion equations with the aid of adaptive time-space higher order methods
dc.contributor.advisorDolejší, Vít
dc.creatorKůs, Pavel
dc.date.accessioned2017-03-29T13:52:06Z
dc.date.available2017-03-29T13:52:06Z
dc.date.issued2006
dc.identifier.urihttp://hdl.handle.net/20.500.11956/5964
dc.description.abstractThis thesis deals with solution of scalar nonlinear convection-diffusion equation with aid of discontinuous Galerkin method. It's aim is to implement an adaptive choice of time step. To do this, we derived 2 sufficiently stable methods for solution of systems of ordinary differential equations obtained by space semidicretization, which is carried out by the discontinuous Galerkin method. Using those two approximate solutions, we estimate local error of discretization. Using it, we are able to choose following time step in such way, that local error is approximately equal to given tolerance. Several numerical simulations were carried out to check properties of this method.en_US
dc.description.abstractPředmětem této práce je řešení skalární nelineární konvektivně-difusní rovnice pomocí nespojité Galerkinovy metody. Jejím cílem je implementace adaptivní volby časového kroku. Za tímto účelem jsou odvozeny 2 dostatečně stabilní metody pro řešení soustav obyčejných diferenciálních rovnic, které vzniknou prosorovou semidiskretizací po užití nespojité Galerkinovy metody. Na základě dvou přibližných řešení, získaných těmito metodami, je odvozen odhad lokální chyby diskretizace. Pomocí něj je pak volen následující časový krok tak, aby se lokální chyba co nejvíce blížila požadované předem zvolené toleranci. Je provedeno několik numerických simulací, které ověřují vlastnosti této metody.cs_CZ
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleŘešení konvektivně-difusních rovnic pomocí adaptivních metod vyšších řádů v prostoru a v časecs_CZ
dc.typediplomová prácecs_CZ
dcterms.created2006
dcterms.dateAccepted2006-06-05
dc.description.departmentKatedra numerické matematikycs_CZ
dc.description.departmentDepartment of Numerical Mathematicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId42099
dc.title.translatedNumerical solution of convection-diffusion equations with the aid of adaptive time-space higher order methodsen_US
dc.contributor.refereeFelcman, Jiří
dc.identifier.aleph000857689
thesis.degree.nameMgr.
thesis.degree.levelmagisterskécs_CZ
thesis.degree.disciplineComputational mathematicsen_US
thesis.degree.disciplineVýpočtová matematikacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra numerické matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Numerical Mathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csVýpočtová matematikacs_CZ
uk.degree-discipline.enComputational mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csPředmětem této práce je řešení skalární nelineární konvektivně-difusní rovnice pomocí nespojité Galerkinovy metody. Jejím cílem je implementace adaptivní volby časového kroku. Za tímto účelem jsou odvozeny 2 dostatečně stabilní metody pro řešení soustav obyčejných diferenciálních rovnic, které vzniknou prosorovou semidiskretizací po užití nespojité Galerkinovy metody. Na základě dvou přibližných řešení, získaných těmito metodami, je odvozen odhad lokální chyby diskretizace. Pomocí něj je pak volen následující časový krok tak, aby se lokální chyba co nejvíce blížila požadované předem zvolené toleranci. Je provedeno několik numerických simulací, které ověřují vlastnosti této metody.cs_CZ
uk.abstract.enThis thesis deals with solution of scalar nonlinear convection-diffusion equation with aid of discontinuous Galerkin method. It's aim is to implement an adaptive choice of time step. To do this, we derived 2 sufficiently stable methods for solution of systems of ordinary differential equations obtained by space semidicretization, which is carried out by the discontinuous Galerkin method. Using those two approximate solutions, we estimate local error of discretization. Using it, we are able to choose following time step in such way, that local error is approximately equal to given tolerance. Several numerical simulations were carried out to check properties of this method.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra numerické matematikycs_CZ
dc.identifier.lisID990008576890106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV