Zobrazit minimální záznam

Geometric formulation of Lagrangian mechanics
dc.contributor.advisorPodolský, Jiří
dc.creatorŠtrupl, František
dc.date.accessioned2017-03-29T14:54:55Z
dc.date.available2017-03-29T14:54:55Z
dc.date.issued2006
dc.identifier.urihttp://hdl.handle.net/20.500.11956/6279
dc.description.abstractIn the present work we study application of differential geometry to the Lagrangian formalism. In the first chapter we summariz e the foundations of geometric formulation of Lagrangian mechanics,in particular eshow the principal meaning of the tagent bundle of the configuration mani-fold and dynamical vector field which solves the Lagrange equations in theirgeometrical form. The Noether's theorem is also formulatedand proved. The second chapter introduces other geometrical definitions related to theLagrangian formalism, such as fiber space, lifts, second-order vector fieldsand Lagrangian vector fields. The existence of symplectic structure and Hamiltonian dynamics on the tangent bundle of the configuration manifold is also demonstrated. Powered by TCPDF (www.tcpdf.org)en_US
dc.description.abstractPředložená práce ukazuje možnosti aplikace diferenciální geometrie na Lagrangeův formalismus. V první kapitole jsou položeny základy geometrické formulace Lagrangeovy mechaniky, je ukázán význam tečného bandlu konfigurační variety a dynamického vektorového pole, které řeší Lagrangeovy rovnice v jejich geometrickém tvaru. Je zformulován a dokázán také významný teorém Emmy Noetherové. Druhá kapitola pak zavádí další geometrické pojmy související s Lagrangeovým formalismem v jeho geometrické podobě, a to zejména fíbrovaný prostor, lifty, vektorové po le druhého řádu aLagrangeovo vektorové pole. Ukázána je také existence symplektické struktury a hamiltonovské dynamiky na tečném bandlu konfigurační variety. Powered by TCPDF (www.tcpdf.org)cs_CZ
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleGeometrická formulace Lagrangeovy mechanikycs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2006
dcterms.dateAccepted2006-06-27
dc.description.departmentÚstav teoretické fyzikycs_CZ
dc.description.departmentInstitute of Theoretical Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId43344
dc.title.translatedGeometric formulation of Lagrangian mechanicsen_US
dc.contributor.refereeKrtouš, Pavel
dc.identifier.aleph000838904
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Physicsen_US
thesis.degree.disciplineObecná fyzikacs_CZ
thesis.degree.programPhysicsen_US
thesis.degree.programFyzikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Ústav teoretické fyzikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Institute of Theoretical Physicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná fyzikacs_CZ
uk.degree-discipline.enGeneral Physicsen_US
uk.degree-program.csFyzikacs_CZ
uk.degree-program.enPhysicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csPředložená práce ukazuje možnosti aplikace diferenciální geometrie na Lagrangeův formalismus. V první kapitole jsou položeny základy geometrické formulace Lagrangeovy mechaniky, je ukázán význam tečného bandlu konfigurační variety a dynamického vektorového pole, které řeší Lagrangeovy rovnice v jejich geometrickém tvaru. Je zformulován a dokázán také významný teorém Emmy Noetherové. Druhá kapitola pak zavádí další geometrické pojmy související s Lagrangeovým formalismem v jeho geometrické podobě, a to zejména fíbrovaný prostor, lifty, vektorové po le druhého řádu aLagrangeovo vektorové pole. Ukázána je také existence symplektické struktury a hamiltonovské dynamiky na tečném bandlu konfigurační variety. Powered by TCPDF (www.tcpdf.org)cs_CZ
uk.abstract.enIn the present work we study application of differential geometry to the Lagrangian formalism. In the first chapter we summariz e the foundations of geometric formulation of Lagrangian mechanics,in particular eshow the principal meaning of the tagent bundle of the configuration mani-fold and dynamical vector field which solves the Lagrange equations in theirgeometrical form. The Noether's theorem is also formulatedand proved. The second chapter introduces other geometrical definitions related to theLagrangian formalism, such as fiber space, lifts, second-order vector fieldsand Lagrangian vector fields. The existence of symplectic structure and Hamiltonian dynamics on the tangent bundle of the configuration manifold is also demonstrated. Powered by TCPDF (www.tcpdf.org)en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Ústav teoretické fyzikycs_CZ
dc.identifier.lisID990008389040106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV