dc.contributor.advisor | Avdulaj, Krenar | |
dc.creator | Öztürk, Durmuş | |
dc.date.accessioned | 2017-05-27T02:38:43Z | |
dc.date.available | 2017-05-27T02:38:43Z | |
dc.date.issued | 2015 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/67272 | |
dc.description.abstract | This study employs Extreme Value Theory and several univariate methods to compare their Value-at-Risk and Expected Shortfall predictive performance. We conduct several out-of-sample backtesting procedures, such as uncondi- tional coverage, independence and conditional coverage tests. The dataset in- cludes five different stock markets, PX50 (Prague, Czech Republic), BIST100 (Istanbul, Turkey), ATHEX (Athens, Greece), PSI20 (Lisbon, Portugal) and IBEX35 (Madrid, Spain). These markets have different financial histories and data span over twenty years. We analyze the global financial crisis period sep- arately to inspect the performance of these methods during the high volatility period. Our results support the most common findings that Extreme Value Theory is one of the most appropriate risk measurement tools. In addition, we find that GARCH family of methods, after accounting for asymmetry and fat tail phenomena, can be equally useful and sometimes even better than Extreme Value Theory based method in terms of risk estimation. Keywords Extreme Value Theory, Value-at-Risk, Expected Shortfall, Out-of-Sample Backtesting Author's e-mail ozturkdurmus@windowslive.com Supervisor's e-mail ies.avdulaj@gmail.com | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Fakulta sociálních věd | cs_CZ |
dc.subject | Extreme Value Theory | cs_CZ |
dc.subject | Value-at-Risk | cs_CZ |
dc.subject | Expected Shortfall | cs_CZ |
dc.subject | Out-of-Sample Backtesting | cs_CZ |
dc.subject | Extreme Value Theory | en_US |
dc.subject | Value-at-Risk | en_US |
dc.subject | Expected Shortfall | en_US |
dc.subject | Out-of-Sample Backtesting | en_US |
dc.title | Measuring Extremes: Empirical Application on European Markets | en_US |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2015 | |
dcterms.dateAccepted | 2015-02-11 | |
dc.description.department | Institute of Economic Studies | en_US |
dc.description.department | Institut ekonomických studií | cs_CZ |
dc.description.faculty | Fakulta sociálních věd | cs_CZ |
dc.description.faculty | Faculty of Social Sciences | en_US |
dc.identifier.repId | 125662 | |
dc.contributor.referee | Janda, Karel | |
dc.identifier.aleph | 001937914 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Ekonomie a finance | cs_CZ |
thesis.degree.discipline | Economics and Finance | en_US |
thesis.degree.program | Ekonomické teorie | cs_CZ |
thesis.degree.program | Economics | en_US |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Fakulta sociálních věd::Institut ekonomických studií | cs_CZ |
uk.taxonomy.organization-en | Faculty of Social Sciences::Institute of Economic Studies | en_US |
uk.faculty-name.cs | Fakulta sociálních věd | cs_CZ |
uk.faculty-name.en | Faculty of Social Sciences | en_US |
uk.faculty-abbr.cs | FSV | cs_CZ |
uk.degree-discipline.cs | Ekonomie a finance | cs_CZ |
uk.degree-discipline.en | Economics and Finance | en_US |
uk.degree-program.cs | Ekonomické teorie | cs_CZ |
uk.degree-program.en | Economics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.en | This study employs Extreme Value Theory and several univariate methods to compare their Value-at-Risk and Expected Shortfall predictive performance. We conduct several out-of-sample backtesting procedures, such as uncondi- tional coverage, independence and conditional coverage tests. The dataset in- cludes five different stock markets, PX50 (Prague, Czech Republic), BIST100 (Istanbul, Turkey), ATHEX (Athens, Greece), PSI20 (Lisbon, Portugal) and IBEX35 (Madrid, Spain). These markets have different financial histories and data span over twenty years. We analyze the global financial crisis period sep- arately to inspect the performance of these methods during the high volatility period. Our results support the most common findings that Extreme Value Theory is one of the most appropriate risk measurement tools. In addition, we find that GARCH family of methods, after accounting for asymmetry and fat tail phenomena, can be equally useful and sometimes even better than Extreme Value Theory based method in terms of risk estimation. Keywords Extreme Value Theory, Value-at-Risk, Expected Shortfall, Out-of-Sample Backtesting Author's e-mail ozturkdurmus@windowslive.com Supervisor's e-mail ies.avdulaj@gmail.com | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Fakulta sociálních věd, Institut ekonomických studií | cs_CZ |
dc.identifier.lisID | 990019379140106986 | |