Lebesgueova věta o hustotě pro Haarovu míru
Lebesgue density theorem for Haar measure
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/6975Identifikátory
SIS: 44154
Kolekce
- Kvalifikační práce [11242]
Autor
Vedoucí práce
Oponent práce
Zahradník, Miloš
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra teoretické informatiky a matematické logiky
Datum obhajoby
12. 9. 2006
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
Práce se zabývá analogií Lebesgueovy věty v prostoru 2k s Haarovou mírou a souvisejícím tématem -k-linkovanosti algebry řešitelných množin tohoto prostoru. Celý text je rozdělen do tří kapitol. První kapitola je věnována vysvětlení nezbytných pojmů a seznamuje čtenáře se základními vlastnostmi tohoto prostoru. Druhá kapitola se potom zabývá vlastní Lebesgueovou větou. Po nezbytném zavedení pojmu bodu hustoty je prakticky celý zbytek kapitoly věnován důkazu této věty. Ta říká, že symetrická diference libovolné měřitelné množiny a množiny jejích bodů hustoty má míru nula. Třetí kapitola je potom věnována větě o -k-linkovanosti, která říká, že algebra měřitelných množin prostoru 2k je -k-linkovaná, pokud je 2 . Klíčová slova: Lebesgueova věta o hustotě, Haarova míra, -k-linkovanost.
In this work, we study Lebesgue theorem analogy in the space 2k with Haar measure and a related theorem about -k-linkedness of the measure algebra of this space. The whole text is divided in three chapters. In the first chapter we explain some important definitions and basic properties of the measure space. The Lebesgue theorem is studied in the second chapter. After the essential definition of the point of density, the major part of the chapter is dedicated to the proof of the theorem. The theorem states, that the symmetric difference between any measurable set and the set of its points of density has measure zero. In the third chapter we study the -k-linkedness theorem; a theorem which states that the measure algebra of the space 2 is -k-linked, if 2 .