dc.contributor.advisor | Hušek, Miroslav | |
dc.creator | Raška, Martin | |
dc.date.accessioned | 2017-06-02T02:35:49Z | |
dc.date.available | 2017-06-02T02:35:49Z | |
dc.date.issued | 2015 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/81970 | |
dc.description.abstract | Předkládaná práce se zabývá vlastnostmi izometrických vnoření metrických prostorů do Urysohnova univerzálního prostoru U (P.S. Urysohn, 1927) a jeho zobecnění (M. Katětov, 1988). Zkoumání mnohých metrických vlastností prostoru U přechází na otázku rozšiřitelnosti vnoření ϕ: M → U z podprostoru M jistého prostoru P na vnoření Φ: P → U. K této otázce zde v situaci P = M ∪ {p} přistupujeme v jemnější podobě. Značí-li ϕ vnoření M → U, označme symbolem Rϕ množinu obrazů bodu p v U při všech možných izometrických rozšířeních vnoření ϕ (Rϕ nazýváme prostorem realizací). Hlavním předmětem práce je zodpovězení následující otázky: Jakých podob nabývají prostory Rϕ, prochází-li ϕ všechna vnoření prostoru M do prostoru U? Metrickou charakterizaci souboru {Rϕ|ϕ: M → U} podávají důsledek 1 a věta 3 ve II. části práce. V části III jsou předchozí výsledky užity k určení počtu tříd metricky ekvivalentních vnoření prostoru M do prostoru U. Jako důsledek obdržíme výsledek J. Melleraye (2007) o homogenitě prostoru U. | cs_CZ |
dc.description.abstract | The thesis covers the properties of isometric embeddings of metric spaces into the Urysohn universal space U (P.S. Urysohn, 1927) and its generalizations (M. Katětov, 1988). The examination of various metric properties of the space U leads to the question of extendability of the embedding ϕ: M → U from a subspace M of a space P onto an embedding Φ: P → U. We approach to this question in situation P = M ∪ {p} in finer form. If ϕ denotes an embedding M → U, let Rϕ denotes the set of images of the point p in U under all possible isometric extensions of the embedding ϕ (we call Rϕ the space of realizations). The main objective of this thesis is answering the following question: Which forms do the spaces Rϕ assume, if ϕ passes all embeddings of the space M into the space U? Corollary 1 and theorem 3 in the II. part of the thesis metrically characterize the family {Rϕ|ϕ: M → U}. We use previous results in part III in order to determine the number of classes of metrically equivalent embeddings of the space M into the space U. As a consequence, we obtain the result of J. Melleray about the homogeneity of the space U. | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | Urysohnův univerzální prostor | cs_CZ |
dc.subject | metrický prostor | cs_CZ |
dc.subject | homogenní prostor | cs_CZ |
dc.subject | vnoření | cs_CZ |
dc.subject | prostor realizací | cs_CZ |
dc.subject | Urysohn universal space | en_US |
dc.subject | metric space | en_US |
dc.subject | homogeneous space | en_US |
dc.subject | embedding | en_US |
dc.subject | space of realizations | en_US |
dc.title | Univerzální metrické prostory | cs_CZ |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2015 | |
dcterms.dateAccepted | 2015-09-03 | |
dc.description.department | Department of Mathematical Analysis | en_US |
dc.description.department | Katedra matematické analýzy | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 91847 | |
dc.title.translated | Universal metric spaces | en_US |
dc.contributor.referee | Vejnar, Benjamin | |
dc.identifier.aleph | 002025089 | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | Obecná matematika | cs_CZ |
thesis.degree.discipline | General Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra matematické analýzy | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Mathematical Analysis | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná matematika | cs_CZ |
uk.degree-discipline.en | General Mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Předkládaná práce se zabývá vlastnostmi izometrických vnoření metrických prostorů do Urysohnova univerzálního prostoru U (P.S. Urysohn, 1927) a jeho zobecnění (M. Katětov, 1988). Zkoumání mnohých metrických vlastností prostoru U přechází na otázku rozšiřitelnosti vnoření ϕ: M → U z podprostoru M jistého prostoru P na vnoření Φ: P → U. K této otázce zde v situaci P = M ∪ {p} přistupujeme v jemnější podobě. Značí-li ϕ vnoření M → U, označme symbolem Rϕ množinu obrazů bodu p v U při všech možných izometrických rozšířeních vnoření ϕ (Rϕ nazýváme prostorem realizací). Hlavním předmětem práce je zodpovězení následující otázky: Jakých podob nabývají prostory Rϕ, prochází-li ϕ všechna vnoření prostoru M do prostoru U? Metrickou charakterizaci souboru {Rϕ|ϕ: M → U} podávají důsledek 1 a věta 3 ve II. části práce. V části III jsou předchozí výsledky užity k určení počtu tříd metricky ekvivalentních vnoření prostoru M do prostoru U. Jako důsledek obdržíme výsledek J. Melleraye (2007) o homogenitě prostoru U. | cs_CZ |
uk.abstract.en | The thesis covers the properties of isometric embeddings of metric spaces into the Urysohn universal space U (P.S. Urysohn, 1927) and its generalizations (M. Katětov, 1988). The examination of various metric properties of the space U leads to the question of extendability of the embedding ϕ: M → U from a subspace M of a space P onto an embedding Φ: P → U. We approach to this question in situation P = M ∪ {p} in finer form. If ϕ denotes an embedding M → U, let Rϕ denotes the set of images of the point p in U under all possible isometric extensions of the embedding ϕ (we call Rϕ the space of realizations). The main objective of this thesis is answering the following question: Which forms do the spaces Rϕ assume, if ϕ passes all embeddings of the space M into the space U? Corollary 1 and theorem 3 in the II. part of the thesis metrically characterize the family {Rϕ|ϕ: M → U}. We use previous results in part III in order to determine the number of classes of metrically equivalent embeddings of the space M into the space U. As a consequence, we obtain the result of J. Melleray about the homogeneity of the space U. | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzy | cs_CZ |
dc.identifier.lisID | 990020250890106986 | |