Zobrazit minimální záznam

Universal metric spaces
dc.contributor.advisorHušek, Miroslav
dc.creatorRaška, Martin
dc.date.accessioned2017-06-02T02:35:49Z
dc.date.available2017-06-02T02:35:49Z
dc.date.issued2015
dc.identifier.urihttp://hdl.handle.net/20.500.11956/81970
dc.description.abstractPředkládaná práce se zabývá vlastnostmi izometrických vnoření metrických prostorů do Urysohnova univerzálního prostoru U (P.S. Urysohn, 1927) a jeho zobecnění (M. Katětov, 1988). Zkoumání mnohých metrických vlastností prostoru U přechází na otázku rozšiřitelnosti vnoření ϕ: M → U z podprostoru M jistého prostoru P na vnoření Φ: P → U. K této otázce zde v situaci P = M ∪ {p} přistupujeme v jemnější podobě. Značí-li ϕ vnoření M → U, označme symbolem Rϕ množinu obrazů bodu p v U při všech možných izometrických rozšířeních vnoření ϕ (Rϕ nazýváme prostorem realizací). Hlavním předmětem práce je zodpovězení následující otázky: Jakých podob nabývají prostory Rϕ, prochází-li ϕ všechna vnoření prostoru M do prostoru U? Metrickou charakterizaci souboru {Rϕ|ϕ: M → U} podávají důsledek 1 a věta 3 ve II. části práce. V části III jsou předchozí výsledky užity k určení počtu tříd metricky ekvivalentních vnoření prostoru M do prostoru U. Jako důsledek obdržíme výsledek J. Melleraye (2007) o homogenitě prostoru U.cs_CZ
dc.description.abstractThe thesis covers the properties of isometric embeddings of metric spaces into the Urysohn universal space U (P.S. Urysohn, 1927) and its generalizations (M. Katětov, 1988). The examination of various metric properties of the space U leads to the question of extendability of the embedding ϕ: M → U from a subspace M of a space P onto an embedding Φ: P → U. We approach to this question in situation P = M ∪ {p} in finer form. If ϕ denotes an embedding M → U, let Rϕ denotes the set of images of the point p in U under all possible isometric extensions of the embedding ϕ (we call Rϕ the space of realizations). The main objective of this thesis is answering the following question: Which forms do the spaces Rϕ assume, if ϕ passes all embeddings of the space M into the space U? Corollary 1 and theorem 3 in the II. part of the thesis metrically characterize the family {Rϕ|ϕ: M → U}. We use previous results in part III in order to determine the number of classes of metrically equivalent embeddings of the space M into the space U. As a consequence, we obtain the result of J. Melleray about the homogeneity of the space U.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectUrysohnův univerzální prostorcs_CZ
dc.subjectmetrický prostorcs_CZ
dc.subjecthomogenní prostorcs_CZ
dc.subjectvnořenícs_CZ
dc.subjectprostor realizacícs_CZ
dc.subjectUrysohn universal spaceen_US
dc.subjectmetric spaceen_US
dc.subjecthomogeneous spaceen_US
dc.subjectembeddingen_US
dc.subjectspace of realizationsen_US
dc.titleUniverzální metrické prostorycs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2015
dcterms.dateAccepted2015-09-03
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId91847
dc.title.translatedUniversal metric spacesen_US
dc.contributor.refereeVejnar, Benjamin
dc.identifier.aleph002025089
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra matematické analýzycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematical Analysisen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csPředkládaná práce se zabývá vlastnostmi izometrických vnoření metrických prostorů do Urysohnova univerzálního prostoru U (P.S. Urysohn, 1927) a jeho zobecnění (M. Katětov, 1988). Zkoumání mnohých metrických vlastností prostoru U přechází na otázku rozšiřitelnosti vnoření ϕ: M → U z podprostoru M jistého prostoru P na vnoření Φ: P → U. K této otázce zde v situaci P = M ∪ {p} přistupujeme v jemnější podobě. Značí-li ϕ vnoření M → U, označme symbolem Rϕ množinu obrazů bodu p v U při všech možných izometrických rozšířeních vnoření ϕ (Rϕ nazýváme prostorem realizací). Hlavním předmětem práce je zodpovězení následující otázky: Jakých podob nabývají prostory Rϕ, prochází-li ϕ všechna vnoření prostoru M do prostoru U? Metrickou charakterizaci souboru {Rϕ|ϕ: M → U} podávají důsledek 1 a věta 3 ve II. části práce. V části III jsou předchozí výsledky užity k určení počtu tříd metricky ekvivalentních vnoření prostoru M do prostoru U. Jako důsledek obdržíme výsledek J. Melleraye (2007) o homogenitě prostoru U.cs_CZ
uk.abstract.enThe thesis covers the properties of isometric embeddings of metric spaces into the Urysohn universal space U (P.S. Urysohn, 1927) and its generalizations (M. Katětov, 1988). The examination of various metric properties of the space U leads to the question of extendability of the embedding ϕ: M → U from a subspace M of a space P onto an embedding Φ: P → U. We approach to this question in situation P = M ∪ {p} in finer form. If ϕ denotes an embedding M → U, let Rϕ denotes the set of images of the point p in U under all possible isometric extensions of the embedding ϕ (we call Rϕ the space of realizations). The main objective of this thesis is answering the following question: Which forms do the spaces Rϕ assume, if ϕ passes all embeddings of the space M into the space U? Corollary 1 and theorem 3 in the II. part of the thesis metrically characterize the family {Rϕ|ϕ: M → U}. We use previous results in part III in order to determine the number of classes of metrically equivalent embeddings of the space M into the space U. As a consequence, we obtain the result of J. Melleray about the homogeneity of the space U.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ
dc.identifier.lisID990020250890106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV