dc.contributor.advisor | Princ, Michael | |
dc.creator | Radosavčević, Aleksa | |
dc.date.accessioned | 2024-08-09T13:42:58Z | |
dc.date.available | 2024-08-09T13:42:58Z | |
dc.date.issued | 2017 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/86338 | |
dc.description.abstract | This thesis aims to identify main driving market risk factors of different strategies implemented by hedge funds by looking at correlation coefficients, implementing Principal Component Analysis and analyzing "loadings" for first three principal components, which explain the largest portion of the variation of hedge funds' returns. In the next step, a stepwise regression through iteration process includes and excludes market risk factors for each strategy, searching for the combination of risk factors which will offer a model with the best "fit", based on The Akaike Information Criterion - AIC and Bayesian Information Criterion - BIC. Lastly, to avoid counterfeit results and overcome model uncertainty issues a Bayesian Model Average - BMA approach was taken. Key words: Hedge Funds, hedge funds' strategies, market risk, principal component analysis, stepwise regression, Akaike Information Criterion, Bayesian Information Criterion, Bayesian Model Averaging Author's e-mail: aleksaradosavcevic@gmail.com Supervisor's e-mail: mp.princ@seznam.cz | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Fakulta sociálních věd | cs_CZ |
dc.subject | Hedge Funds | en_US |
dc.subject | hedge funds' strategies | en_US |
dc.subject | market risk | en_US |
dc.subject | principal component analysis | en_US |
dc.subject | stepwise regression | en_US |
dc.subject | Akaike Information Criterion | en_US |
dc.subject | Bayesian Information Criterion | en_US |
dc.subject | Bayesian Model Averaging | en_US |
dc.title | Risk factor modeling of Hedge Funds' strategies | en_US |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2017 | |
dcterms.dateAccepted | 2017-06-21 | |
dc.description.department | Institute of Economic Studies | en_US |
dc.description.department | Institut ekonomických studií | cs_CZ |
dc.description.faculty | Fakulta sociálních věd | cs_CZ |
dc.description.faculty | Faculty of Social Sciences | en_US |
dc.identifier.repId | 151882 | |
dc.title.translated | Risk factor modeling of Hedge Funds' strategies | cs_CZ |
dc.contributor.referee | Šopov, Boril | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Master in Economics and Finance | en_US |
thesis.degree.discipline | Economics and Finance | cs_CZ |
thesis.degree.program | Economics | en_US |
thesis.degree.program | Ekonomické teorie | cs_CZ |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Fakulta sociálních věd::Institut ekonomických studií | cs_CZ |
uk.taxonomy.organization-en | Faculty of Social Sciences::Institute of Economic Studies | en_US |
uk.faculty-name.cs | Fakulta sociálních věd | cs_CZ |
uk.faculty-name.en | Faculty of Social Sciences | en_US |
uk.faculty-abbr.cs | FSV | cs_CZ |
uk.degree-discipline.cs | Economics and Finance | cs_CZ |
uk.degree-discipline.en | Master in Economics and Finance | en_US |
uk.degree-program.cs | Ekonomické teorie | cs_CZ |
uk.degree-program.en | Economics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.en | This thesis aims to identify main driving market risk factors of different strategies implemented by hedge funds by looking at correlation coefficients, implementing Principal Component Analysis and analyzing "loadings" for first three principal components, which explain the largest portion of the variation of hedge funds' returns. In the next step, a stepwise regression through iteration process includes and excludes market risk factors for each strategy, searching for the combination of risk factors which will offer a model with the best "fit", based on The Akaike Information Criterion - AIC and Bayesian Information Criterion - BIC. Lastly, to avoid counterfeit results and overcome model uncertainty issues a Bayesian Model Average - BMA approach was taken. Key words: Hedge Funds, hedge funds' strategies, market risk, principal component analysis, stepwise regression, Akaike Information Criterion, Bayesian Information Criterion, Bayesian Model Averaging Author's e-mail: aleksaradosavcevic@gmail.com Supervisor's e-mail: mp.princ@seznam.cz | en_US |
uk.file-availability | P | |
uk.grantor | Univerzita Karlova, Fakulta sociálních věd, Institut ekonomických studií | cs_CZ |
thesis.grade.code | 1 | |
uk.publication-place | Praha | cs_CZ |
uk.embargo.reason | The annexes of the thesis or its part are inaccessible in accordance with article 18a (7) of The Code of Study and Examination in conjunction with Article 9 of the Rector’s Directive No. 6/2010. | en |
uk.embargo.reason | Přílohy práce nebo její části jsou nepřístupné v souladu s čl. 18a odst. 7 Studijního a zkušebního řádu Univerzity Karlovy v Praze ve spojení s čl. 9 opatření rektora č. 6/2010. | cs |
uk.thesis.defenceStatus | O | |
dc.identifier.lisID | 990021444880106986 | |