Zobrazit minimální záznam

Váhové nerovnosti pro operátory Hardyova typu a jejich aplikace v teorii interpolací
dc.contributor.advisorPick, Luboš
dc.creatorPražák, David
dc.date.accessioned2017-04-03T10:05:27Z
dc.date.available2017-04-03T10:05:27Z
dc.date.issued2007
dc.identifier.urihttp://hdl.handle.net/20.500.11956/9353
dc.description.abstractStudujeme reálné interpolační prostory (Xo, X1)g,q, kde g je obecný funkční parametr (nikoli nutně mocninná váha). Použitím diskretizační metody diskretizujeme normu v (Xo, X1)g,q· Výsledná norma je dána pomocí odpovídající kvazikonkávní funkce h a její dikretizační posloupnosti, prostor s touto normou značíme (Xo, X1)h,q' Podáme přímý důkaz věty V. I. Ovchinnikova a A. S. Titenkovova, která charakterizuje prostor (Lp0 , LPJh,q v jazyce nerostoucího přerovnání. Dále najdeme vztah mezi dilatačními indexy kvazikonkávní funkce h a její diskretizační posloupností. Pokud jsou dilatační indexy funkce h nelimitní, prostor (Lp 0 , Lp1 )h,q splývá s nějakým klasickým Lorentzovým prostorem Aq(r.p). V případě limitního dilatačního indexu ukážeme, že prostor (Lp0 , LPJh,q může být reprezentovaný jako extrapolační prostor. Powered by TCPDF (www.tcpdf.org)cs_CZ
dc.description.abstractWe study real interpolation spaces (Xo, X1) 12,q, where {} is a parameter function, not necessarily a power weight. Using a discretization method we "discretize" the norm in (Xo, X1) 12,q. The resulting norm is given by the corresponding quasiconcave function h and its discretizing sequence, we denote the space endowed with this norm by (Xo, X1)h,q· We give a direct proof of a theorem dueto V. I. Ovchinnikov and A. S. Titenkov, which characterizes the space (Lp0 , Lp1 )h,q in terms of the non- increasing rearrangement. Further, we find a relation between the dilation indices of a quasiconcave function h and its discretizing sequence. In the case when the dilation indices of h are not limiting, the space ( Lp0 , Lp1 ) h,q coincides wi th some classical Lorentz space A q ( r.p). If the dilation indices are limiting, then we characterize the space (Lp0 , Lp1 )h,q as an extrapolation space. Powered by TCPDF (www.tcpdf.org)en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleWeighted inequalities for Hardy-type operators and their application in the Interplation Theoryen_US
dc.typediplomová prácecs_CZ
dcterms.created2007
dcterms.dateAccepted2007-05-23
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId44206
dc.title.translatedVáhové nerovnosti pro operátory Hardyova typu a jejich aplikace v teorii interpolacícs_CZ
dc.contributor.refereeKrbec, Miroslav
dc.identifier.aleph001851625
thesis.degree.nameMgr.
thesis.degree.levelmagisterskécs_CZ
thesis.degree.disciplineMatematická analýzacs_CZ
thesis.degree.disciplineMathematical Analysisen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra matematické analýzycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematical Analysisen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická analýzacs_CZ
uk.degree-discipline.enMathematical Analysisen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csStudujeme reálné interpolační prostory (Xo, X1)g,q, kde g je obecný funkční parametr (nikoli nutně mocninná váha). Použitím diskretizační metody diskretizujeme normu v (Xo, X1)g,q· Výsledná norma je dána pomocí odpovídající kvazikonkávní funkce h a její dikretizační posloupnosti, prostor s touto normou značíme (Xo, X1)h,q' Podáme přímý důkaz věty V. I. Ovchinnikova a A. S. Titenkovova, která charakterizuje prostor (Lp0 , LPJh,q v jazyce nerostoucího přerovnání. Dále najdeme vztah mezi dilatačními indexy kvazikonkávní funkce h a její diskretizační posloupností. Pokud jsou dilatační indexy funkce h nelimitní, prostor (Lp 0 , Lp1 )h,q splývá s nějakým klasickým Lorentzovým prostorem Aq(r.p). V případě limitního dilatačního indexu ukážeme, že prostor (Lp0 , LPJh,q může být reprezentovaný jako extrapolační prostor. Powered by TCPDF (www.tcpdf.org)cs_CZ
uk.abstract.enWe study real interpolation spaces (Xo, X1) 12,q, where {} is a parameter function, not necessarily a power weight. Using a discretization method we "discretize" the norm in (Xo, X1) 12,q. The resulting norm is given by the corresponding quasiconcave function h and its discretizing sequence, we denote the space endowed with this norm by (Xo, X1)h,q· We give a direct proof of a theorem dueto V. I. Ovchinnikov and A. S. Titenkov, which characterizes the space (Lp0 , Lp1 )h,q in terms of the non- increasing rearrangement. Further, we find a relation between the dilation indices of a quasiconcave function h and its discretizing sequence. In the case when the dilation indices of h are not limiting, the space ( Lp0 , Lp1 ) h,q coincides wi th some classical Lorentz space A q ( r.p). If the dilation indices are limiting, then we characterize the space (Lp0 , Lp1 )h,q as an extrapolation space. Powered by TCPDF (www.tcpdf.org)en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ
dc.identifier.lisID990018516250106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV